Maclaurin expansion of $arctan(x)/(1 − x).$












10












$begingroup$


How was this Maclaurin expansion derived? For each $|x|<1,$
begin{align} left( frac{arctan(x)}{1-x} right)&=left( sum^{infty}_{k=0}x^kright)left(sum^{infty}_{j=0}dfrac{(-1)^j x^{2j+1}}{2j+1}right)\&= sum^{infty}_{k=0}left(sum_{jin D_k} dfrac{ (-1)^{j} }{2j+1}right)x^k,;text{where}; D_k={jin Bbb{N}:0leq jleq (k-1)/2}.end{align}



HERE'S MY TRIAL



begin{align} left( frac{arctan(x)}{1-x} right)&=left( sum^{infty}_{k=0}x^kright)left(sum^{infty}_{j=0}dfrac{(-1)^j x^{2j+1}}{2j+1}right)\&= sum^{infty}_{k=0}left(sum^{k}_{j=0} x^jdfrac{ (-1)^{(k-j)} x^{2(k-j)+1}}{2(k-j)+1}right),;text{for}; kin Bbb{N}\&stackrel{text{how?}}{=} sum^{infty}_{k=0}left(sum_{jin D_k} dfrac{ (-1)^{j} }{2j+1}right)x^k.end{align}










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I'm not sure what you're asking here. Do you want a different expansion? This is a fairly straightforward approach.
    $endgroup$
    – robjohn
    Jan 7 at 15:36










  • $begingroup$
    @robjohn: I have edited it. Thanks.
    $endgroup$
    – Omojola Micheal
    Jan 7 at 16:02






  • 1




    $begingroup$
    Look up the Cauchy product.
    $endgroup$
    – Darks
    Jan 7 at 16:30
















10












$begingroup$


How was this Maclaurin expansion derived? For each $|x|<1,$
begin{align} left( frac{arctan(x)}{1-x} right)&=left( sum^{infty}_{k=0}x^kright)left(sum^{infty}_{j=0}dfrac{(-1)^j x^{2j+1}}{2j+1}right)\&= sum^{infty}_{k=0}left(sum_{jin D_k} dfrac{ (-1)^{j} }{2j+1}right)x^k,;text{where}; D_k={jin Bbb{N}:0leq jleq (k-1)/2}.end{align}



HERE'S MY TRIAL



begin{align} left( frac{arctan(x)}{1-x} right)&=left( sum^{infty}_{k=0}x^kright)left(sum^{infty}_{j=0}dfrac{(-1)^j x^{2j+1}}{2j+1}right)\&= sum^{infty}_{k=0}left(sum^{k}_{j=0} x^jdfrac{ (-1)^{(k-j)} x^{2(k-j)+1}}{2(k-j)+1}right),;text{for}; kin Bbb{N}\&stackrel{text{how?}}{=} sum^{infty}_{k=0}left(sum_{jin D_k} dfrac{ (-1)^{j} }{2j+1}right)x^k.end{align}










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I'm not sure what you're asking here. Do you want a different expansion? This is a fairly straightforward approach.
    $endgroup$
    – robjohn
    Jan 7 at 15:36










  • $begingroup$
    @robjohn: I have edited it. Thanks.
    $endgroup$
    – Omojola Micheal
    Jan 7 at 16:02






  • 1




    $begingroup$
    Look up the Cauchy product.
    $endgroup$
    – Darks
    Jan 7 at 16:30














10












10








10


4



$begingroup$


How was this Maclaurin expansion derived? For each $|x|<1,$
begin{align} left( frac{arctan(x)}{1-x} right)&=left( sum^{infty}_{k=0}x^kright)left(sum^{infty}_{j=0}dfrac{(-1)^j x^{2j+1}}{2j+1}right)\&= sum^{infty}_{k=0}left(sum_{jin D_k} dfrac{ (-1)^{j} }{2j+1}right)x^k,;text{where}; D_k={jin Bbb{N}:0leq jleq (k-1)/2}.end{align}



HERE'S MY TRIAL



begin{align} left( frac{arctan(x)}{1-x} right)&=left( sum^{infty}_{k=0}x^kright)left(sum^{infty}_{j=0}dfrac{(-1)^j x^{2j+1}}{2j+1}right)\&= sum^{infty}_{k=0}left(sum^{k}_{j=0} x^jdfrac{ (-1)^{(k-j)} x^{2(k-j)+1}}{2(k-j)+1}right),;text{for}; kin Bbb{N}\&stackrel{text{how?}}{=} sum^{infty}_{k=0}left(sum_{jin D_k} dfrac{ (-1)^{j} }{2j+1}right)x^k.end{align}










share|cite|improve this question











$endgroup$




How was this Maclaurin expansion derived? For each $|x|<1,$
begin{align} left( frac{arctan(x)}{1-x} right)&=left( sum^{infty}_{k=0}x^kright)left(sum^{infty}_{j=0}dfrac{(-1)^j x^{2j+1}}{2j+1}right)\&= sum^{infty}_{k=0}left(sum_{jin D_k} dfrac{ (-1)^{j} }{2j+1}right)x^k,;text{where}; D_k={jin Bbb{N}:0leq jleq (k-1)/2}.end{align}



HERE'S MY TRIAL



begin{align} left( frac{arctan(x)}{1-x} right)&=left( sum^{infty}_{k=0}x^kright)left(sum^{infty}_{j=0}dfrac{(-1)^j x^{2j+1}}{2j+1}right)\&= sum^{infty}_{k=0}left(sum^{k}_{j=0} x^jdfrac{ (-1)^{(k-j)} x^{2(k-j)+1}}{2(k-j)+1}right),;text{for}; kin Bbb{N}\&stackrel{text{how?}}{=} sum^{infty}_{k=0}left(sum_{jin D_k} dfrac{ (-1)^{j} }{2j+1}right)x^k.end{align}







real-analysis calculus sequences-and-series analysis taylor-expansion






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 7 at 22:49









Matemáticos Chibchas

5,44322141




5,44322141










asked Jan 7 at 14:33









Omojola MichealOmojola Micheal

2,068424




2,068424








  • 1




    $begingroup$
    I'm not sure what you're asking here. Do you want a different expansion? This is a fairly straightforward approach.
    $endgroup$
    – robjohn
    Jan 7 at 15:36










  • $begingroup$
    @robjohn: I have edited it. Thanks.
    $endgroup$
    – Omojola Micheal
    Jan 7 at 16:02






  • 1




    $begingroup$
    Look up the Cauchy product.
    $endgroup$
    – Darks
    Jan 7 at 16:30














  • 1




    $begingroup$
    I'm not sure what you're asking here. Do you want a different expansion? This is a fairly straightforward approach.
    $endgroup$
    – robjohn
    Jan 7 at 15:36










  • $begingroup$
    @robjohn: I have edited it. Thanks.
    $endgroup$
    – Omojola Micheal
    Jan 7 at 16:02






  • 1




    $begingroup$
    Look up the Cauchy product.
    $endgroup$
    – Darks
    Jan 7 at 16:30








1




1




$begingroup$
I'm not sure what you're asking here. Do you want a different expansion? This is a fairly straightforward approach.
$endgroup$
– robjohn
Jan 7 at 15:36




$begingroup$
I'm not sure what you're asking here. Do you want a different expansion? This is a fairly straightforward approach.
$endgroup$
– robjohn
Jan 7 at 15:36












$begingroup$
@robjohn: I have edited it. Thanks.
$endgroup$
– Omojola Micheal
Jan 7 at 16:02




$begingroup$
@robjohn: I have edited it. Thanks.
$endgroup$
– Omojola Micheal
Jan 7 at 16:02




1




1




$begingroup$
Look up the Cauchy product.
$endgroup$
– Darks
Jan 7 at 16:30




$begingroup$
Look up the Cauchy product.
$endgroup$
– Darks
Jan 7 at 16:30










2 Answers
2






active

oldest

votes


















3












$begingroup$

The idea here is to use the Cauchy Product. However, since one series has exponents of $k$ and the other series has exponents of $2j+1$, we need to extract the essence of the product formula: that is, for a given $m$, the products of which terms give $x^m$? That would be when $k+2j+1=m$. Thus, the coefficient of $x^m$ in the final product is
$$
sum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{vphantom{b} a_{m-2j-1} }^{substack{text{coefficient}\text{of $x^{m-2j-1}$}}}overbrace{ b_j }^{substack{text{coefficient}\text{of $x^{2j+1}$}}}
$$

That is,
$$
sum_{k=0}^infty a_kx^ksum_{j=0}^infty b_jx^{2j+1}
=sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}a_{m-2j-1}b_jx^m
$$

Since $a_k=1$ for all $kge0$, we have
$$
sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{ frac{(-1)^j}{2j+1} }^{b_j}x^m
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    (+1) Thanks for the correction.
    $endgroup$
    – Omojola Micheal
    Jan 8 at 5:35



















1












$begingroup$

Corrected: Thanks to robjohn for the mentorship. Since
begin{align} left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^jright)&=sum^{infty}_{r=0}left( sum^{r}_{j=0}b_j a_{r-j} right)x^{r},;text{where}; r=k+j;text{and};rinBbb{N},.end{align}
we have that,



begin{align} left( frac{arctan x }{1-x} right)&=left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^{2j+1}right)\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}b_j a_{gamma-2j-1} right)x^{gamma},;text{where}; gamma=k+2j+1;text{and};gammainBbb{N},\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}dfrac{ (-1)^{j} }{2j+1} right)x^{gamma},\&= sum^{infty}_{gamma=0}left(sum_{jin D_gamma} dfrac{ (-1)^{j} }{2j+1}right)x^gamma.end{align}
where $D_gamma={jin Bbb{N}:0leq jleq (gamma-1)/2},;a_{gamma-2j-1} =1,,jin D_gamma ,;b_j= (-1)^{j} /(2j+1).$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    In the last set of equations, the second line is wrong for exponents $k$ and $2j+1$, and the upper limit in the inner sum on the third line does not make sense because $j$ is the variable of iteration. It is not obvious how $frac{gamma-1}2$ appears in the fourth line (especially since that line says $gamma=k+2j+1$ which is the upper limit in the prevous line).
    $endgroup$
    – robjohn
    Jan 7 at 23:29










  • $begingroup$
    @robjohn: Will fix it.
    $endgroup$
    – Omojola Micheal
    Jan 7 at 23:30










  • $begingroup$
    @robjohn: I have fixed it. Thank you!
    $endgroup$
    – Omojola Micheal
    Jan 8 at 5:20












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065071%2fmaclaurin-expansion-of-arctanx-1-%25e2%2588%2592-x%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

The idea here is to use the Cauchy Product. However, since one series has exponents of $k$ and the other series has exponents of $2j+1$, we need to extract the essence of the product formula: that is, for a given $m$, the products of which terms give $x^m$? That would be when $k+2j+1=m$. Thus, the coefficient of $x^m$ in the final product is
$$
sum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{vphantom{b} a_{m-2j-1} }^{substack{text{coefficient}\text{of $x^{m-2j-1}$}}}overbrace{ b_j }^{substack{text{coefficient}\text{of $x^{2j+1}$}}}
$$

That is,
$$
sum_{k=0}^infty a_kx^ksum_{j=0}^infty b_jx^{2j+1}
=sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}a_{m-2j-1}b_jx^m
$$

Since $a_k=1$ for all $kge0$, we have
$$
sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{ frac{(-1)^j}{2j+1} }^{b_j}x^m
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    (+1) Thanks for the correction.
    $endgroup$
    – Omojola Micheal
    Jan 8 at 5:35
















3












$begingroup$

The idea here is to use the Cauchy Product. However, since one series has exponents of $k$ and the other series has exponents of $2j+1$, we need to extract the essence of the product formula: that is, for a given $m$, the products of which terms give $x^m$? That would be when $k+2j+1=m$. Thus, the coefficient of $x^m$ in the final product is
$$
sum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{vphantom{b} a_{m-2j-1} }^{substack{text{coefficient}\text{of $x^{m-2j-1}$}}}overbrace{ b_j }^{substack{text{coefficient}\text{of $x^{2j+1}$}}}
$$

That is,
$$
sum_{k=0}^infty a_kx^ksum_{j=0}^infty b_jx^{2j+1}
=sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}a_{m-2j-1}b_jx^m
$$

Since $a_k=1$ for all $kge0$, we have
$$
sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{ frac{(-1)^j}{2j+1} }^{b_j}x^m
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    (+1) Thanks for the correction.
    $endgroup$
    – Omojola Micheal
    Jan 8 at 5:35














3












3








3





$begingroup$

The idea here is to use the Cauchy Product. However, since one series has exponents of $k$ and the other series has exponents of $2j+1$, we need to extract the essence of the product formula: that is, for a given $m$, the products of which terms give $x^m$? That would be when $k+2j+1=m$. Thus, the coefficient of $x^m$ in the final product is
$$
sum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{vphantom{b} a_{m-2j-1} }^{substack{text{coefficient}\text{of $x^{m-2j-1}$}}}overbrace{ b_j }^{substack{text{coefficient}\text{of $x^{2j+1}$}}}
$$

That is,
$$
sum_{k=0}^infty a_kx^ksum_{j=0}^infty b_jx^{2j+1}
=sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}a_{m-2j-1}b_jx^m
$$

Since $a_k=1$ for all $kge0$, we have
$$
sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{ frac{(-1)^j}{2j+1} }^{b_j}x^m
$$






share|cite|improve this answer









$endgroup$



The idea here is to use the Cauchy Product. However, since one series has exponents of $k$ and the other series has exponents of $2j+1$, we need to extract the essence of the product formula: that is, for a given $m$, the products of which terms give $x^m$? That would be when $k+2j+1=m$. Thus, the coefficient of $x^m$ in the final product is
$$
sum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{vphantom{b} a_{m-2j-1} }^{substack{text{coefficient}\text{of $x^{m-2j-1}$}}}overbrace{ b_j }^{substack{text{coefficient}\text{of $x^{2j+1}$}}}
$$

That is,
$$
sum_{k=0}^infty a_kx^ksum_{j=0}^infty b_jx^{2j+1}
=sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}a_{m-2j-1}b_jx^m
$$

Since $a_k=1$ for all $kge0$, we have
$$
sum_{m=0}^inftysum_{j=0}^{leftlfloorfrac{m-1}2rightrfloor}overbrace{ frac{(-1)^j}{2j+1} }^{b_j}x^m
$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 7 at 17:36









robjohnrobjohn

271k27314643




271k27314643












  • $begingroup$
    (+1) Thanks for the correction.
    $endgroup$
    – Omojola Micheal
    Jan 8 at 5:35


















  • $begingroup$
    (+1) Thanks for the correction.
    $endgroup$
    – Omojola Micheal
    Jan 8 at 5:35
















$begingroup$
(+1) Thanks for the correction.
$endgroup$
– Omojola Micheal
Jan 8 at 5:35




$begingroup$
(+1) Thanks for the correction.
$endgroup$
– Omojola Micheal
Jan 8 at 5:35











1












$begingroup$

Corrected: Thanks to robjohn for the mentorship. Since
begin{align} left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^jright)&=sum^{infty}_{r=0}left( sum^{r}_{j=0}b_j a_{r-j} right)x^{r},;text{where}; r=k+j;text{and};rinBbb{N},.end{align}
we have that,



begin{align} left( frac{arctan x }{1-x} right)&=left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^{2j+1}right)\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}b_j a_{gamma-2j-1} right)x^{gamma},;text{where}; gamma=k+2j+1;text{and};gammainBbb{N},\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}dfrac{ (-1)^{j} }{2j+1} right)x^{gamma},\&= sum^{infty}_{gamma=0}left(sum_{jin D_gamma} dfrac{ (-1)^{j} }{2j+1}right)x^gamma.end{align}
where $D_gamma={jin Bbb{N}:0leq jleq (gamma-1)/2},;a_{gamma-2j-1} =1,,jin D_gamma ,;b_j= (-1)^{j} /(2j+1).$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    In the last set of equations, the second line is wrong for exponents $k$ and $2j+1$, and the upper limit in the inner sum on the third line does not make sense because $j$ is the variable of iteration. It is not obvious how $frac{gamma-1}2$ appears in the fourth line (especially since that line says $gamma=k+2j+1$ which is the upper limit in the prevous line).
    $endgroup$
    – robjohn
    Jan 7 at 23:29










  • $begingroup$
    @robjohn: Will fix it.
    $endgroup$
    – Omojola Micheal
    Jan 7 at 23:30










  • $begingroup$
    @robjohn: I have fixed it. Thank you!
    $endgroup$
    – Omojola Micheal
    Jan 8 at 5:20
















1












$begingroup$

Corrected: Thanks to robjohn for the mentorship. Since
begin{align} left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^jright)&=sum^{infty}_{r=0}left( sum^{r}_{j=0}b_j a_{r-j} right)x^{r},;text{where}; r=k+j;text{and};rinBbb{N},.end{align}
we have that,



begin{align} left( frac{arctan x }{1-x} right)&=left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^{2j+1}right)\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}b_j a_{gamma-2j-1} right)x^{gamma},;text{where}; gamma=k+2j+1;text{and};gammainBbb{N},\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}dfrac{ (-1)^{j} }{2j+1} right)x^{gamma},\&= sum^{infty}_{gamma=0}left(sum_{jin D_gamma} dfrac{ (-1)^{j} }{2j+1}right)x^gamma.end{align}
where $D_gamma={jin Bbb{N}:0leq jleq (gamma-1)/2},;a_{gamma-2j-1} =1,,jin D_gamma ,;b_j= (-1)^{j} /(2j+1).$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    In the last set of equations, the second line is wrong for exponents $k$ and $2j+1$, and the upper limit in the inner sum on the third line does not make sense because $j$ is the variable of iteration. It is not obvious how $frac{gamma-1}2$ appears in the fourth line (especially since that line says $gamma=k+2j+1$ which is the upper limit in the prevous line).
    $endgroup$
    – robjohn
    Jan 7 at 23:29










  • $begingroup$
    @robjohn: Will fix it.
    $endgroup$
    – Omojola Micheal
    Jan 7 at 23:30










  • $begingroup$
    @robjohn: I have fixed it. Thank you!
    $endgroup$
    – Omojola Micheal
    Jan 8 at 5:20














1












1








1





$begingroup$

Corrected: Thanks to robjohn for the mentorship. Since
begin{align} left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^jright)&=sum^{infty}_{r=0}left( sum^{r}_{j=0}b_j a_{r-j} right)x^{r},;text{where}; r=k+j;text{and};rinBbb{N},.end{align}
we have that,



begin{align} left( frac{arctan x }{1-x} right)&=left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^{2j+1}right)\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}b_j a_{gamma-2j-1} right)x^{gamma},;text{where}; gamma=k+2j+1;text{and};gammainBbb{N},\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}dfrac{ (-1)^{j} }{2j+1} right)x^{gamma},\&= sum^{infty}_{gamma=0}left(sum_{jin D_gamma} dfrac{ (-1)^{j} }{2j+1}right)x^gamma.end{align}
where $D_gamma={jin Bbb{N}:0leq jleq (gamma-1)/2},;a_{gamma-2j-1} =1,,jin D_gamma ,;b_j= (-1)^{j} /(2j+1).$






share|cite|improve this answer











$endgroup$



Corrected: Thanks to robjohn for the mentorship. Since
begin{align} left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^jright)&=sum^{infty}_{r=0}left( sum^{r}_{j=0}b_j a_{r-j} right)x^{r},;text{where}; r=k+j;text{and};rinBbb{N},.end{align}
we have that,



begin{align} left( frac{arctan x }{1-x} right)&=left( sum^{infty}_{k=0}a_k x^kright)left( sum^{infty}_{j=0}b_j x^{2j+1}right)\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}b_j a_{gamma-2j-1} right)x^{gamma},;text{where}; gamma=k+2j+1;text{and};gammainBbb{N},\&=sum^{infty}_{gamma=0}left( sum^{frac{gamma-1}{2}}_{j=0}dfrac{ (-1)^{j} }{2j+1} right)x^{gamma},\&= sum^{infty}_{gamma=0}left(sum_{jin D_gamma} dfrac{ (-1)^{j} }{2j+1}right)x^gamma.end{align}
where $D_gamma={jin Bbb{N}:0leq jleq (gamma-1)/2},;a_{gamma-2j-1} =1,,jin D_gamma ,;b_j= (-1)^{j} /(2j+1).$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 8 at 11:30

























answered Jan 7 at 21:57









Omojola MichealOmojola Micheal

2,068424




2,068424












  • $begingroup$
    In the last set of equations, the second line is wrong for exponents $k$ and $2j+1$, and the upper limit in the inner sum on the third line does not make sense because $j$ is the variable of iteration. It is not obvious how $frac{gamma-1}2$ appears in the fourth line (especially since that line says $gamma=k+2j+1$ which is the upper limit in the prevous line).
    $endgroup$
    – robjohn
    Jan 7 at 23:29










  • $begingroup$
    @robjohn: Will fix it.
    $endgroup$
    – Omojola Micheal
    Jan 7 at 23:30










  • $begingroup$
    @robjohn: I have fixed it. Thank you!
    $endgroup$
    – Omojola Micheal
    Jan 8 at 5:20


















  • $begingroup$
    In the last set of equations, the second line is wrong for exponents $k$ and $2j+1$, and the upper limit in the inner sum on the third line does not make sense because $j$ is the variable of iteration. It is not obvious how $frac{gamma-1}2$ appears in the fourth line (especially since that line says $gamma=k+2j+1$ which is the upper limit in the prevous line).
    $endgroup$
    – robjohn
    Jan 7 at 23:29










  • $begingroup$
    @robjohn: Will fix it.
    $endgroup$
    – Omojola Micheal
    Jan 7 at 23:30










  • $begingroup$
    @robjohn: I have fixed it. Thank you!
    $endgroup$
    – Omojola Micheal
    Jan 8 at 5:20
















$begingroup$
In the last set of equations, the second line is wrong for exponents $k$ and $2j+1$, and the upper limit in the inner sum on the third line does not make sense because $j$ is the variable of iteration. It is not obvious how $frac{gamma-1}2$ appears in the fourth line (especially since that line says $gamma=k+2j+1$ which is the upper limit in the prevous line).
$endgroup$
– robjohn
Jan 7 at 23:29




$begingroup$
In the last set of equations, the second line is wrong for exponents $k$ and $2j+1$, and the upper limit in the inner sum on the third line does not make sense because $j$ is the variable of iteration. It is not obvious how $frac{gamma-1}2$ appears in the fourth line (especially since that line says $gamma=k+2j+1$ which is the upper limit in the prevous line).
$endgroup$
– robjohn
Jan 7 at 23:29












$begingroup$
@robjohn: Will fix it.
$endgroup$
– Omojola Micheal
Jan 7 at 23:30




$begingroup$
@robjohn: Will fix it.
$endgroup$
– Omojola Micheal
Jan 7 at 23:30












$begingroup$
@robjohn: I have fixed it. Thank you!
$endgroup$
– Omojola Micheal
Jan 8 at 5:20




$begingroup$
@robjohn: I have fixed it. Thank you!
$endgroup$
– Omojola Micheal
Jan 8 at 5:20


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065071%2fmaclaurin-expansion-of-arctanx-1-%25e2%2588%2592-x%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Probability when a professor distributes a quiz and homework assignment to a class of n students.

Aardman Animations

Are they similar matrix