calculating complex numbers $ (1+isqrt{3})^{2017} + (1-isqrt{3})^{2017} $
$begingroup$
I have the following
$ (1+isqrt{3})^{2017} + (1-isqrt{3})^{2017} $
and I have to find the answser.
I think the answer might be $ 2^{2017} $ but I don't know how to find
complex-numbers
$endgroup$
add a comment |
$begingroup$
I have the following
$ (1+isqrt{3})^{2017} + (1-isqrt{3})^{2017} $
and I have to find the answser.
I think the answer might be $ 2^{2017} $ but I don't know how to find
complex-numbers
$endgroup$
$begingroup$
Are you familiar with polar notation for complex numbers? i.e. converting from $x + iy$ to $r mbox{cis} theta$ (or $r e^{itheta}$)
$endgroup$
– ConMan
Jan 7 at 22:28
add a comment |
$begingroup$
I have the following
$ (1+isqrt{3})^{2017} + (1-isqrt{3})^{2017} $
and I have to find the answser.
I think the answer might be $ 2^{2017} $ but I don't know how to find
complex-numbers
$endgroup$
I have the following
$ (1+isqrt{3})^{2017} + (1-isqrt{3})^{2017} $
and I have to find the answser.
I think the answer might be $ 2^{2017} $ but I don't know how to find
complex-numbers
complex-numbers
asked Jan 7 at 22:25
Student123Student123
536
536
$begingroup$
Are you familiar with polar notation for complex numbers? i.e. converting from $x + iy$ to $r mbox{cis} theta$ (or $r e^{itheta}$)
$endgroup$
– ConMan
Jan 7 at 22:28
add a comment |
$begingroup$
Are you familiar with polar notation for complex numbers? i.e. converting from $x + iy$ to $r mbox{cis} theta$ (or $r e^{itheta}$)
$endgroup$
– ConMan
Jan 7 at 22:28
$begingroup$
Are you familiar with polar notation for complex numbers? i.e. converting from $x + iy$ to $r mbox{cis} theta$ (or $r e^{itheta}$)
$endgroup$
– ConMan
Jan 7 at 22:28
$begingroup$
Are you familiar with polar notation for complex numbers? i.e. converting from $x + iy$ to $r mbox{cis} theta$ (or $r e^{itheta}$)
$endgroup$
– ConMan
Jan 7 at 22:28
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Use $$(1+sqrt3i)^3=(1-sqrt3i)^3=-8$$ and $2017equiv1(mod3).$
I got $$2cdot(-8)^{672}=2^{2017}.$$
$endgroup$
add a comment |
$begingroup$
First, convert these to polar form, so $1+isqrt{3}=2e^{ifrac{pi}{3}},$ and $1-isqrt{3}=2e^{-ifrac{pi}{3}},$
then raise these exponential terms to the desired power, and proceed with the computation, using the identity
$$e^{it}=cos(t)+isin(t).$$
$endgroup$
1
$begingroup$
using $e^{i2pi n}=1$ might help too
$endgroup$
– Henry
Jan 7 at 22:36
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065578%2fcalculating-complex-numbers-1i-sqrt32017-1-i-sqrt32017%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Use $$(1+sqrt3i)^3=(1-sqrt3i)^3=-8$$ and $2017equiv1(mod3).$
I got $$2cdot(-8)^{672}=2^{2017}.$$
$endgroup$
add a comment |
$begingroup$
Use $$(1+sqrt3i)^3=(1-sqrt3i)^3=-8$$ and $2017equiv1(mod3).$
I got $$2cdot(-8)^{672}=2^{2017}.$$
$endgroup$
add a comment |
$begingroup$
Use $$(1+sqrt3i)^3=(1-sqrt3i)^3=-8$$ and $2017equiv1(mod3).$
I got $$2cdot(-8)^{672}=2^{2017}.$$
$endgroup$
Use $$(1+sqrt3i)^3=(1-sqrt3i)^3=-8$$ and $2017equiv1(mod3).$
I got $$2cdot(-8)^{672}=2^{2017}.$$
answered Jan 7 at 22:38
Michael RozenbergMichael Rozenberg
110k1896201
110k1896201
add a comment |
add a comment |
$begingroup$
First, convert these to polar form, so $1+isqrt{3}=2e^{ifrac{pi}{3}},$ and $1-isqrt{3}=2e^{-ifrac{pi}{3}},$
then raise these exponential terms to the desired power, and proceed with the computation, using the identity
$$e^{it}=cos(t)+isin(t).$$
$endgroup$
1
$begingroup$
using $e^{i2pi n}=1$ might help too
$endgroup$
– Henry
Jan 7 at 22:36
add a comment |
$begingroup$
First, convert these to polar form, so $1+isqrt{3}=2e^{ifrac{pi}{3}},$ and $1-isqrt{3}=2e^{-ifrac{pi}{3}},$
then raise these exponential terms to the desired power, and proceed with the computation, using the identity
$$e^{it}=cos(t)+isin(t).$$
$endgroup$
1
$begingroup$
using $e^{i2pi n}=1$ might help too
$endgroup$
– Henry
Jan 7 at 22:36
add a comment |
$begingroup$
First, convert these to polar form, so $1+isqrt{3}=2e^{ifrac{pi}{3}},$ and $1-isqrt{3}=2e^{-ifrac{pi}{3}},$
then raise these exponential terms to the desired power, and proceed with the computation, using the identity
$$e^{it}=cos(t)+isin(t).$$
$endgroup$
First, convert these to polar form, so $1+isqrt{3}=2e^{ifrac{pi}{3}},$ and $1-isqrt{3}=2e^{-ifrac{pi}{3}},$
then raise these exponential terms to the desired power, and proceed with the computation, using the identity
$$e^{it}=cos(t)+isin(t).$$
answered Jan 7 at 22:31
ChickenmancerChickenmancer
3,284724
3,284724
1
$begingroup$
using $e^{i2pi n}=1$ might help too
$endgroup$
– Henry
Jan 7 at 22:36
add a comment |
1
$begingroup$
using $e^{i2pi n}=1$ might help too
$endgroup$
– Henry
Jan 7 at 22:36
1
1
$begingroup$
using $e^{i2pi n}=1$ might help too
$endgroup$
– Henry
Jan 7 at 22:36
$begingroup$
using $e^{i2pi n}=1$ might help too
$endgroup$
– Henry
Jan 7 at 22:36
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065578%2fcalculating-complex-numbers-1i-sqrt32017-1-i-sqrt32017%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Are you familiar with polar notation for complex numbers? i.e. converting from $x + iy$ to $r mbox{cis} theta$ (or $r e^{itheta}$)
$endgroup$
– ConMan
Jan 7 at 22:28