calculating complex numbers $ (1+isqrt{3})^{2017} + (1-isqrt{3})^{2017} $












0












$begingroup$


I have the following
$ (1+isqrt{3})^{2017} + (1-isqrt{3})^{2017} $
and I have to find the answser.



I think the answer might be $ 2^{2017} $ but I don't know how to find










share|cite|improve this question









$endgroup$












  • $begingroup$
    Are you familiar with polar notation for complex numbers? i.e. converting from $x + iy$ to $r mbox{cis} theta$ (or $r e^{itheta}$)
    $endgroup$
    – ConMan
    Jan 7 at 22:28


















0












$begingroup$


I have the following
$ (1+isqrt{3})^{2017} + (1-isqrt{3})^{2017} $
and I have to find the answser.



I think the answer might be $ 2^{2017} $ but I don't know how to find










share|cite|improve this question









$endgroup$












  • $begingroup$
    Are you familiar with polar notation for complex numbers? i.e. converting from $x + iy$ to $r mbox{cis} theta$ (or $r e^{itheta}$)
    $endgroup$
    – ConMan
    Jan 7 at 22:28
















0












0








0


1



$begingroup$


I have the following
$ (1+isqrt{3})^{2017} + (1-isqrt{3})^{2017} $
and I have to find the answser.



I think the answer might be $ 2^{2017} $ but I don't know how to find










share|cite|improve this question









$endgroup$




I have the following
$ (1+isqrt{3})^{2017} + (1-isqrt{3})^{2017} $
and I have to find the answser.



I think the answer might be $ 2^{2017} $ but I don't know how to find







complex-numbers






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 7 at 22:25









Student123Student123

536




536












  • $begingroup$
    Are you familiar with polar notation for complex numbers? i.e. converting from $x + iy$ to $r mbox{cis} theta$ (or $r e^{itheta}$)
    $endgroup$
    – ConMan
    Jan 7 at 22:28




















  • $begingroup$
    Are you familiar with polar notation for complex numbers? i.e. converting from $x + iy$ to $r mbox{cis} theta$ (or $r e^{itheta}$)
    $endgroup$
    – ConMan
    Jan 7 at 22:28


















$begingroup$
Are you familiar with polar notation for complex numbers? i.e. converting from $x + iy$ to $r mbox{cis} theta$ (or $r e^{itheta}$)
$endgroup$
– ConMan
Jan 7 at 22:28






$begingroup$
Are you familiar with polar notation for complex numbers? i.e. converting from $x + iy$ to $r mbox{cis} theta$ (or $r e^{itheta}$)
$endgroup$
– ConMan
Jan 7 at 22:28












2 Answers
2






active

oldest

votes


















4












$begingroup$

Use $$(1+sqrt3i)^3=(1-sqrt3i)^3=-8$$ and $2017equiv1(mod3).$



I got $$2cdot(-8)^{672}=2^{2017}.$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    First, convert these to polar form, so $1+isqrt{3}=2e^{ifrac{pi}{3}},$ and $1-isqrt{3}=2e^{-ifrac{pi}{3}},$
    then raise these exponential terms to the desired power, and proceed with the computation, using the identity
    $$e^{it}=cos(t)+isin(t).$$






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      using $e^{i2pi n}=1$ might help too
      $endgroup$
      – Henry
      Jan 7 at 22:36












    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065578%2fcalculating-complex-numbers-1i-sqrt32017-1-i-sqrt32017%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Use $$(1+sqrt3i)^3=(1-sqrt3i)^3=-8$$ and $2017equiv1(mod3).$



    I got $$2cdot(-8)^{672}=2^{2017}.$$






    share|cite|improve this answer









    $endgroup$


















      4












      $begingroup$

      Use $$(1+sqrt3i)^3=(1-sqrt3i)^3=-8$$ and $2017equiv1(mod3).$



      I got $$2cdot(-8)^{672}=2^{2017}.$$






      share|cite|improve this answer









      $endgroup$
















        4












        4








        4





        $begingroup$

        Use $$(1+sqrt3i)^3=(1-sqrt3i)^3=-8$$ and $2017equiv1(mod3).$



        I got $$2cdot(-8)^{672}=2^{2017}.$$






        share|cite|improve this answer









        $endgroup$



        Use $$(1+sqrt3i)^3=(1-sqrt3i)^3=-8$$ and $2017equiv1(mod3).$



        I got $$2cdot(-8)^{672}=2^{2017}.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 7 at 22:38









        Michael RozenbergMichael Rozenberg

        110k1896201




        110k1896201























            1












            $begingroup$

            First, convert these to polar form, so $1+isqrt{3}=2e^{ifrac{pi}{3}},$ and $1-isqrt{3}=2e^{-ifrac{pi}{3}},$
            then raise these exponential terms to the desired power, and proceed with the computation, using the identity
            $$e^{it}=cos(t)+isin(t).$$






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              using $e^{i2pi n}=1$ might help too
              $endgroup$
              – Henry
              Jan 7 at 22:36
















            1












            $begingroup$

            First, convert these to polar form, so $1+isqrt{3}=2e^{ifrac{pi}{3}},$ and $1-isqrt{3}=2e^{-ifrac{pi}{3}},$
            then raise these exponential terms to the desired power, and proceed with the computation, using the identity
            $$e^{it}=cos(t)+isin(t).$$






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              using $e^{i2pi n}=1$ might help too
              $endgroup$
              – Henry
              Jan 7 at 22:36














            1












            1








            1





            $begingroup$

            First, convert these to polar form, so $1+isqrt{3}=2e^{ifrac{pi}{3}},$ and $1-isqrt{3}=2e^{-ifrac{pi}{3}},$
            then raise these exponential terms to the desired power, and proceed with the computation, using the identity
            $$e^{it}=cos(t)+isin(t).$$






            share|cite|improve this answer









            $endgroup$



            First, convert these to polar form, so $1+isqrt{3}=2e^{ifrac{pi}{3}},$ and $1-isqrt{3}=2e^{-ifrac{pi}{3}},$
            then raise these exponential terms to the desired power, and proceed with the computation, using the identity
            $$e^{it}=cos(t)+isin(t).$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 7 at 22:31









            ChickenmancerChickenmancer

            3,284724




            3,284724








            • 1




              $begingroup$
              using $e^{i2pi n}=1$ might help too
              $endgroup$
              – Henry
              Jan 7 at 22:36














            • 1




              $begingroup$
              using $e^{i2pi n}=1$ might help too
              $endgroup$
              – Henry
              Jan 7 at 22:36








            1




            1




            $begingroup$
            using $e^{i2pi n}=1$ might help too
            $endgroup$
            – Henry
            Jan 7 at 22:36




            $begingroup$
            using $e^{i2pi n}=1$ might help too
            $endgroup$
            – Henry
            Jan 7 at 22:36


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065578%2fcalculating-complex-numbers-1i-sqrt32017-1-i-sqrt32017%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Probability when a professor distributes a quiz and homework assignment to a class of n students.

            Aardman Animations

            Are they similar matrix