Limit using definition of $e$
$begingroup$
I'm trying to calculate the following limit:
$$
lim_{xto0}bigl(-4x + sqrt{16x^2 + 1},bigr)^{b/x}
$$
My instinct is as follows: use the binomial theorem on the square root, cancel higher order terms (i.e treat the square root as $1$), then appeal to the limit definition of $e$ to get the answer $exp(-4b)$. However, this does not feel terribly rigorous and I'm unsure if it's right.
Does anyone have any advice?
real-analysis
$endgroup$
add a comment |
$begingroup$
I'm trying to calculate the following limit:
$$
lim_{xto0}bigl(-4x + sqrt{16x^2 + 1},bigr)^{b/x}
$$
My instinct is as follows: use the binomial theorem on the square root, cancel higher order terms (i.e treat the square root as $1$), then appeal to the limit definition of $e$ to get the answer $exp(-4b)$. However, this does not feel terribly rigorous and I'm unsure if it's right.
Does anyone have any advice?
real-analysis
$endgroup$
add a comment |
$begingroup$
I'm trying to calculate the following limit:
$$
lim_{xto0}bigl(-4x + sqrt{16x^2 + 1},bigr)^{b/x}
$$
My instinct is as follows: use the binomial theorem on the square root, cancel higher order terms (i.e treat the square root as $1$), then appeal to the limit definition of $e$ to get the answer $exp(-4b)$. However, this does not feel terribly rigorous and I'm unsure if it's right.
Does anyone have any advice?
real-analysis
$endgroup$
I'm trying to calculate the following limit:
$$
lim_{xto0}bigl(-4x + sqrt{16x^2 + 1},bigr)^{b/x}
$$
My instinct is as follows: use the binomial theorem on the square root, cancel higher order terms (i.e treat the square root as $1$), then appeal to the limit definition of $e$ to get the answer $exp(-4b)$. However, this does not feel terribly rigorous and I'm unsure if it's right.
Does anyone have any advice?
real-analysis
real-analysis
edited Jan 7 at 21:19
egreg
186k1486208
186k1486208
asked Jan 7 at 21:14
Bob Garth Bob Garth
61
61
add a comment |
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
You can use little-$o$ notation. You're taking the limit of $$(1-4x+8x^2+o(x^2))^{b/x}=exp frac{b}{x}(-4x+o(x))=exp (-4b+o(1))=exp(-4b)+o(1).$$
$endgroup$
$begingroup$
@egreg Thanks; fixed.
$endgroup$
– J.G.
Jan 7 at 21:35
add a comment |
$begingroup$
Letting $L = lim_{X to 0} (-4x+sqrt{16x^2+1})^{frac{b}{x}}$ we have;
$$ln{L}=b cdot lim_{X to 0} frac{ln{-4x+sqrt{16x^2+1}}}{x} $$
By using L'Hôpital's Rule, this is equal to:
$$ln{L}=b cdot lim_{X to 0} frac{-4+frac{32x}{2 cdot sqrt{16x^2+1}}}{-4x+sqrt{16x^2+1}} $$
$$=-4 cdot b$$
$$therefore L=e^{-4 cdot b}$$
$endgroup$
$begingroup$
uselimlimits_{xto 0}
for $limlimits_{xto 0}$
$endgroup$
– zwim
Jan 7 at 21:27
$begingroup$
A few judicious parentheses might help here.
$endgroup$
– TonyK
Jan 7 at 21:30
add a comment |
$begingroup$
It's basically right:
$$
-4x+sqrt{1+16x^2}=-4x+1+frac{16x^2}{2}+o(x^2)=1-4x+o(x)
$$
Now you can substitute $-4x=y$, so the limit becomes
$$
lim_{yto0}bigl((1+y+o(y))^{1/y}bigr)^{-4b}
$$
and $lim_{yto0}(1+y)^{1/y}=e$ is known.
$endgroup$
add a comment |
$begingroup$
Consider $$y=bigr( sqrt{16x^2 + 1}-4xbigr)^{frac bx}$$ By Taylor or binomial expansion, we have
$$sqrt{16x^2 + 1}=1+8 x^2+Oleft(x^4right)$$ that is to say
$$sqrt{16x^2 + 1}-4x=1-4 x+8 x^2+Oleft(x^4right)$$ Now
$$log(y)=frac bx logbigr( sqrt{16x^2 + 1}-4xbigr)=frac bxlogbigr(1-4 x+8 x^2+Oleft(x^4right)bigr)=frac bxbigr( -4 x+frac{32 x^3}{3}+Oleft(x^4right)bigr)$$
$$log(y)=-4 b+frac{32 b x^2}{3}+Oleft(x^3right)$$ Continue with Taylor
$$y=e^{log(y)}=e^{-4 b}+frac{32}{3} b e^{-4 b} x^2+Oleft(x^3right)$$ which shows the limit and how it is approached.
$endgroup$
add a comment |
$begingroup$
Here is a way by "enforcing" a $color{red}{1}$ in the brackets and using the standard limit for $e$:
$y_n stackrel{n to infty}{longrightarrow}0 Rightarrow (1+y_n)^{frac{1}{y_n}}stackrel{n to infty}{longrightarrow}e$
begin{eqnarray*}
bigl(-4x + sqrt{16x^2 + 1},bigr)^{b/x} & = & left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{b/x}\
& = & left(underbrace{left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{frac{1}{color{blue}{-4x + sqrt{16x^2+1} -1}}}}_{stackrel{xto 0}{rightarrow}e} right)^{bcdot underbrace{frac{color{blue}{-4x + sqrt{16x^2+1} -1}}{x}}_{stackrel{xto 0}{rightarrow}-4=f'(0),; f(x) = -4x + sqrt{16x^2+1}}} \
& stackrel{xto 0}{longrightarrow} & e^{bcdot (-4)}
end{eqnarray*}
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065499%2flimit-using-definition-of-e%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can use little-$o$ notation. You're taking the limit of $$(1-4x+8x^2+o(x^2))^{b/x}=exp frac{b}{x}(-4x+o(x))=exp (-4b+o(1))=exp(-4b)+o(1).$$
$endgroup$
$begingroup$
@egreg Thanks; fixed.
$endgroup$
– J.G.
Jan 7 at 21:35
add a comment |
$begingroup$
You can use little-$o$ notation. You're taking the limit of $$(1-4x+8x^2+o(x^2))^{b/x}=exp frac{b}{x}(-4x+o(x))=exp (-4b+o(1))=exp(-4b)+o(1).$$
$endgroup$
$begingroup$
@egreg Thanks; fixed.
$endgroup$
– J.G.
Jan 7 at 21:35
add a comment |
$begingroup$
You can use little-$o$ notation. You're taking the limit of $$(1-4x+8x^2+o(x^2))^{b/x}=exp frac{b}{x}(-4x+o(x))=exp (-4b+o(1))=exp(-4b)+o(1).$$
$endgroup$
You can use little-$o$ notation. You're taking the limit of $$(1-4x+8x^2+o(x^2))^{b/x}=exp frac{b}{x}(-4x+o(x))=exp (-4b+o(1))=exp(-4b)+o(1).$$
edited Jan 7 at 21:35
answered Jan 7 at 21:25
J.G.J.G.
33.3k23252
33.3k23252
$begingroup$
@egreg Thanks; fixed.
$endgroup$
– J.G.
Jan 7 at 21:35
add a comment |
$begingroup$
@egreg Thanks; fixed.
$endgroup$
– J.G.
Jan 7 at 21:35
$begingroup$
@egreg Thanks; fixed.
$endgroup$
– J.G.
Jan 7 at 21:35
$begingroup$
@egreg Thanks; fixed.
$endgroup$
– J.G.
Jan 7 at 21:35
add a comment |
$begingroup$
Letting $L = lim_{X to 0} (-4x+sqrt{16x^2+1})^{frac{b}{x}}$ we have;
$$ln{L}=b cdot lim_{X to 0} frac{ln{-4x+sqrt{16x^2+1}}}{x} $$
By using L'Hôpital's Rule, this is equal to:
$$ln{L}=b cdot lim_{X to 0} frac{-4+frac{32x}{2 cdot sqrt{16x^2+1}}}{-4x+sqrt{16x^2+1}} $$
$$=-4 cdot b$$
$$therefore L=e^{-4 cdot b}$$
$endgroup$
$begingroup$
uselimlimits_{xto 0}
for $limlimits_{xto 0}$
$endgroup$
– zwim
Jan 7 at 21:27
$begingroup$
A few judicious parentheses might help here.
$endgroup$
– TonyK
Jan 7 at 21:30
add a comment |
$begingroup$
Letting $L = lim_{X to 0} (-4x+sqrt{16x^2+1})^{frac{b}{x}}$ we have;
$$ln{L}=b cdot lim_{X to 0} frac{ln{-4x+sqrt{16x^2+1}}}{x} $$
By using L'Hôpital's Rule, this is equal to:
$$ln{L}=b cdot lim_{X to 0} frac{-4+frac{32x}{2 cdot sqrt{16x^2+1}}}{-4x+sqrt{16x^2+1}} $$
$$=-4 cdot b$$
$$therefore L=e^{-4 cdot b}$$
$endgroup$
$begingroup$
uselimlimits_{xto 0}
for $limlimits_{xto 0}$
$endgroup$
– zwim
Jan 7 at 21:27
$begingroup$
A few judicious parentheses might help here.
$endgroup$
– TonyK
Jan 7 at 21:30
add a comment |
$begingroup$
Letting $L = lim_{X to 0} (-4x+sqrt{16x^2+1})^{frac{b}{x}}$ we have;
$$ln{L}=b cdot lim_{X to 0} frac{ln{-4x+sqrt{16x^2+1}}}{x} $$
By using L'Hôpital's Rule, this is equal to:
$$ln{L}=b cdot lim_{X to 0} frac{-4+frac{32x}{2 cdot sqrt{16x^2+1}}}{-4x+sqrt{16x^2+1}} $$
$$=-4 cdot b$$
$$therefore L=e^{-4 cdot b}$$
$endgroup$
Letting $L = lim_{X to 0} (-4x+sqrt{16x^2+1})^{frac{b}{x}}$ we have;
$$ln{L}=b cdot lim_{X to 0} frac{ln{-4x+sqrt{16x^2+1}}}{x} $$
By using L'Hôpital's Rule, this is equal to:
$$ln{L}=b cdot lim_{X to 0} frac{-4+frac{32x}{2 cdot sqrt{16x^2+1}}}{-4x+sqrt{16x^2+1}} $$
$$=-4 cdot b$$
$$therefore L=e^{-4 cdot b}$$
answered Jan 7 at 21:26
Peter ForemanPeter Foreman
7,1841318
7,1841318
$begingroup$
uselimlimits_{xto 0}
for $limlimits_{xto 0}$
$endgroup$
– zwim
Jan 7 at 21:27
$begingroup$
A few judicious parentheses might help here.
$endgroup$
– TonyK
Jan 7 at 21:30
add a comment |
$begingroup$
uselimlimits_{xto 0}
for $limlimits_{xto 0}$
$endgroup$
– zwim
Jan 7 at 21:27
$begingroup$
A few judicious parentheses might help here.
$endgroup$
– TonyK
Jan 7 at 21:30
$begingroup$
use
limlimits_{xto 0}
for $limlimits_{xto 0}$$endgroup$
– zwim
Jan 7 at 21:27
$begingroup$
use
limlimits_{xto 0}
for $limlimits_{xto 0}$$endgroup$
– zwim
Jan 7 at 21:27
$begingroup$
A few judicious parentheses might help here.
$endgroup$
– TonyK
Jan 7 at 21:30
$begingroup$
A few judicious parentheses might help here.
$endgroup$
– TonyK
Jan 7 at 21:30
add a comment |
$begingroup$
It's basically right:
$$
-4x+sqrt{1+16x^2}=-4x+1+frac{16x^2}{2}+o(x^2)=1-4x+o(x)
$$
Now you can substitute $-4x=y$, so the limit becomes
$$
lim_{yto0}bigl((1+y+o(y))^{1/y}bigr)^{-4b}
$$
and $lim_{yto0}(1+y)^{1/y}=e$ is known.
$endgroup$
add a comment |
$begingroup$
It's basically right:
$$
-4x+sqrt{1+16x^2}=-4x+1+frac{16x^2}{2}+o(x^2)=1-4x+o(x)
$$
Now you can substitute $-4x=y$, so the limit becomes
$$
lim_{yto0}bigl((1+y+o(y))^{1/y}bigr)^{-4b}
$$
and $lim_{yto0}(1+y)^{1/y}=e$ is known.
$endgroup$
add a comment |
$begingroup$
It's basically right:
$$
-4x+sqrt{1+16x^2}=-4x+1+frac{16x^2}{2}+o(x^2)=1-4x+o(x)
$$
Now you can substitute $-4x=y$, so the limit becomes
$$
lim_{yto0}bigl((1+y+o(y))^{1/y}bigr)^{-4b}
$$
and $lim_{yto0}(1+y)^{1/y}=e$ is known.
$endgroup$
It's basically right:
$$
-4x+sqrt{1+16x^2}=-4x+1+frac{16x^2}{2}+o(x^2)=1-4x+o(x)
$$
Now you can substitute $-4x=y$, so the limit becomes
$$
lim_{yto0}bigl((1+y+o(y))^{1/y}bigr)^{-4b}
$$
and $lim_{yto0}(1+y)^{1/y}=e$ is known.
answered Jan 7 at 21:39
egregegreg
186k1486208
186k1486208
add a comment |
add a comment |
$begingroup$
Consider $$y=bigr( sqrt{16x^2 + 1}-4xbigr)^{frac bx}$$ By Taylor or binomial expansion, we have
$$sqrt{16x^2 + 1}=1+8 x^2+Oleft(x^4right)$$ that is to say
$$sqrt{16x^2 + 1}-4x=1-4 x+8 x^2+Oleft(x^4right)$$ Now
$$log(y)=frac bx logbigr( sqrt{16x^2 + 1}-4xbigr)=frac bxlogbigr(1-4 x+8 x^2+Oleft(x^4right)bigr)=frac bxbigr( -4 x+frac{32 x^3}{3}+Oleft(x^4right)bigr)$$
$$log(y)=-4 b+frac{32 b x^2}{3}+Oleft(x^3right)$$ Continue with Taylor
$$y=e^{log(y)}=e^{-4 b}+frac{32}{3} b e^{-4 b} x^2+Oleft(x^3right)$$ which shows the limit and how it is approached.
$endgroup$
add a comment |
$begingroup$
Consider $$y=bigr( sqrt{16x^2 + 1}-4xbigr)^{frac bx}$$ By Taylor or binomial expansion, we have
$$sqrt{16x^2 + 1}=1+8 x^2+Oleft(x^4right)$$ that is to say
$$sqrt{16x^2 + 1}-4x=1-4 x+8 x^2+Oleft(x^4right)$$ Now
$$log(y)=frac bx logbigr( sqrt{16x^2 + 1}-4xbigr)=frac bxlogbigr(1-4 x+8 x^2+Oleft(x^4right)bigr)=frac bxbigr( -4 x+frac{32 x^3}{3}+Oleft(x^4right)bigr)$$
$$log(y)=-4 b+frac{32 b x^2}{3}+Oleft(x^3right)$$ Continue with Taylor
$$y=e^{log(y)}=e^{-4 b}+frac{32}{3} b e^{-4 b} x^2+Oleft(x^3right)$$ which shows the limit and how it is approached.
$endgroup$
add a comment |
$begingroup$
Consider $$y=bigr( sqrt{16x^2 + 1}-4xbigr)^{frac bx}$$ By Taylor or binomial expansion, we have
$$sqrt{16x^2 + 1}=1+8 x^2+Oleft(x^4right)$$ that is to say
$$sqrt{16x^2 + 1}-4x=1-4 x+8 x^2+Oleft(x^4right)$$ Now
$$log(y)=frac bx logbigr( sqrt{16x^2 + 1}-4xbigr)=frac bxlogbigr(1-4 x+8 x^2+Oleft(x^4right)bigr)=frac bxbigr( -4 x+frac{32 x^3}{3}+Oleft(x^4right)bigr)$$
$$log(y)=-4 b+frac{32 b x^2}{3}+Oleft(x^3right)$$ Continue with Taylor
$$y=e^{log(y)}=e^{-4 b}+frac{32}{3} b e^{-4 b} x^2+Oleft(x^3right)$$ which shows the limit and how it is approached.
$endgroup$
Consider $$y=bigr( sqrt{16x^2 + 1}-4xbigr)^{frac bx}$$ By Taylor or binomial expansion, we have
$$sqrt{16x^2 + 1}=1+8 x^2+Oleft(x^4right)$$ that is to say
$$sqrt{16x^2 + 1}-4x=1-4 x+8 x^2+Oleft(x^4right)$$ Now
$$log(y)=frac bx logbigr( sqrt{16x^2 + 1}-4xbigr)=frac bxlogbigr(1-4 x+8 x^2+Oleft(x^4right)bigr)=frac bxbigr( -4 x+frac{32 x^3}{3}+Oleft(x^4right)bigr)$$
$$log(y)=-4 b+frac{32 b x^2}{3}+Oleft(x^3right)$$ Continue with Taylor
$$y=e^{log(y)}=e^{-4 b}+frac{32}{3} b e^{-4 b} x^2+Oleft(x^3right)$$ which shows the limit and how it is approached.
answered Jan 8 at 6:42
Claude LeiboviciClaude Leibovici
125k1158135
125k1158135
add a comment |
add a comment |
$begingroup$
Here is a way by "enforcing" a $color{red}{1}$ in the brackets and using the standard limit for $e$:
$y_n stackrel{n to infty}{longrightarrow}0 Rightarrow (1+y_n)^{frac{1}{y_n}}stackrel{n to infty}{longrightarrow}e$
begin{eqnarray*}
bigl(-4x + sqrt{16x^2 + 1},bigr)^{b/x} & = & left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{b/x}\
& = & left(underbrace{left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{frac{1}{color{blue}{-4x + sqrt{16x^2+1} -1}}}}_{stackrel{xto 0}{rightarrow}e} right)^{bcdot underbrace{frac{color{blue}{-4x + sqrt{16x^2+1} -1}}{x}}_{stackrel{xto 0}{rightarrow}-4=f'(0),; f(x) = -4x + sqrt{16x^2+1}}} \
& stackrel{xto 0}{longrightarrow} & e^{bcdot (-4)}
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
Here is a way by "enforcing" a $color{red}{1}$ in the brackets and using the standard limit for $e$:
$y_n stackrel{n to infty}{longrightarrow}0 Rightarrow (1+y_n)^{frac{1}{y_n}}stackrel{n to infty}{longrightarrow}e$
begin{eqnarray*}
bigl(-4x + sqrt{16x^2 + 1},bigr)^{b/x} & = & left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{b/x}\
& = & left(underbrace{left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{frac{1}{color{blue}{-4x + sqrt{16x^2+1} -1}}}}_{stackrel{xto 0}{rightarrow}e} right)^{bcdot underbrace{frac{color{blue}{-4x + sqrt{16x^2+1} -1}}{x}}_{stackrel{xto 0}{rightarrow}-4=f'(0),; f(x) = -4x + sqrt{16x^2+1}}} \
& stackrel{xto 0}{longrightarrow} & e^{bcdot (-4)}
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
Here is a way by "enforcing" a $color{red}{1}$ in the brackets and using the standard limit for $e$:
$y_n stackrel{n to infty}{longrightarrow}0 Rightarrow (1+y_n)^{frac{1}{y_n}}stackrel{n to infty}{longrightarrow}e$
begin{eqnarray*}
bigl(-4x + sqrt{16x^2 + 1},bigr)^{b/x} & = & left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{b/x}\
& = & left(underbrace{left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{frac{1}{color{blue}{-4x + sqrt{16x^2+1} -1}}}}_{stackrel{xto 0}{rightarrow}e} right)^{bcdot underbrace{frac{color{blue}{-4x + sqrt{16x^2+1} -1}}{x}}_{stackrel{xto 0}{rightarrow}-4=f'(0),; f(x) = -4x + sqrt{16x^2+1}}} \
& stackrel{xto 0}{longrightarrow} & e^{bcdot (-4)}
end{eqnarray*}
$endgroup$
Here is a way by "enforcing" a $color{red}{1}$ in the brackets and using the standard limit for $e$:
$y_n stackrel{n to infty}{longrightarrow}0 Rightarrow (1+y_n)^{frac{1}{y_n}}stackrel{n to infty}{longrightarrow}e$
begin{eqnarray*}
bigl(-4x + sqrt{16x^2 + 1},bigr)^{b/x} & = & left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{b/x}\
& = & left(underbrace{left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{frac{1}{color{blue}{-4x + sqrt{16x^2+1} -1}}}}_{stackrel{xto 0}{rightarrow}e} right)^{bcdot underbrace{frac{color{blue}{-4x + sqrt{16x^2+1} -1}}{x}}_{stackrel{xto 0}{rightarrow}-4=f'(0),; f(x) = -4x + sqrt{16x^2+1}}} \
& stackrel{xto 0}{longrightarrow} & e^{bcdot (-4)}
end{eqnarray*}
answered Jan 8 at 12:11
trancelocationtrancelocation
14k1829
14k1829
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065499%2flimit-using-definition-of-e%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown