Limit of $x_n=sum_{k=np+1}^{nq}frac{1}{k}$ using Riemann sum
$begingroup$
I am trying to find the limit of the following sequence using Riemann sum:
$$x_n=sum_{k=np+1}^{nq}frac{1}{k}qquad p,qinmathbb{N}quad p<q$$
I have tried to develope the expression:
$$frac{1}{np+1}+frac{1}{np+2}+...+frac{1}{nq}=frac{1}{n}(frac{1}{p+frac{1}{n}}+frac{1}{p+frac{2}{n}}+...+frac{1}{p+frac{n(q-p)}{n}})=frac{1}{n}sum_{k=1}^{n(q-p)}frac{1}{p+frac{k}{n}}$$
But I need an expression like $frac{1}{n}sum_{k=1}^{n}f(frac{k}{n})$, from $k=1$ to $n$, not to $n(q-p)$, so I can calculate the limit as $int_0^1f(x)dx.$
Could you give me some hints? Thanks!
sequences-and-series limits riemann-sum
$endgroup$
add a comment |
$begingroup$
I am trying to find the limit of the following sequence using Riemann sum:
$$x_n=sum_{k=np+1}^{nq}frac{1}{k}qquad p,qinmathbb{N}quad p<q$$
I have tried to develope the expression:
$$frac{1}{np+1}+frac{1}{np+2}+...+frac{1}{nq}=frac{1}{n}(frac{1}{p+frac{1}{n}}+frac{1}{p+frac{2}{n}}+...+frac{1}{p+frac{n(q-p)}{n}})=frac{1}{n}sum_{k=1}^{n(q-p)}frac{1}{p+frac{k}{n}}$$
But I need an expression like $frac{1}{n}sum_{k=1}^{n}f(frac{k}{n})$, from $k=1$ to $n$, not to $n(q-p)$, so I can calculate the limit as $int_0^1f(x)dx.$
Could you give me some hints? Thanks!
sequences-and-series limits riemann-sum
$endgroup$
add a comment |
$begingroup$
I am trying to find the limit of the following sequence using Riemann sum:
$$x_n=sum_{k=np+1}^{nq}frac{1}{k}qquad p,qinmathbb{N}quad p<q$$
I have tried to develope the expression:
$$frac{1}{np+1}+frac{1}{np+2}+...+frac{1}{nq}=frac{1}{n}(frac{1}{p+frac{1}{n}}+frac{1}{p+frac{2}{n}}+...+frac{1}{p+frac{n(q-p)}{n}})=frac{1}{n}sum_{k=1}^{n(q-p)}frac{1}{p+frac{k}{n}}$$
But I need an expression like $frac{1}{n}sum_{k=1}^{n}f(frac{k}{n})$, from $k=1$ to $n$, not to $n(q-p)$, so I can calculate the limit as $int_0^1f(x)dx.$
Could you give me some hints? Thanks!
sequences-and-series limits riemann-sum
$endgroup$
I am trying to find the limit of the following sequence using Riemann sum:
$$x_n=sum_{k=np+1}^{nq}frac{1}{k}qquad p,qinmathbb{N}quad p<q$$
I have tried to develope the expression:
$$frac{1}{np+1}+frac{1}{np+2}+...+frac{1}{nq}=frac{1}{n}(frac{1}{p+frac{1}{n}}+frac{1}{p+frac{2}{n}}+...+frac{1}{p+frac{n(q-p)}{n}})=frac{1}{n}sum_{k=1}^{n(q-p)}frac{1}{p+frac{k}{n}}$$
But I need an expression like $frac{1}{n}sum_{k=1}^{n}f(frac{k}{n})$, from $k=1$ to $n$, not to $n(q-p)$, so I can calculate the limit as $int_0^1f(x)dx.$
Could you give me some hints? Thanks!
sequences-and-series limits riemann-sum
sequences-and-series limits riemann-sum
asked Jan 4 at 15:13
GibbsGibbs
137111
137111
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
We just have to calculate $int_0^{q-p}$ instead of $int_0^1$. Then, with
$$f(x)=frac{1}{p+x}$$
$$int_0^{q-p}frac{1}{p+x}dx=[ln|p+x|]_0^{q-p}=ln|p+q-p|-ln|p|=lnfrac{q}{p}$$
And we are done.
$endgroup$
add a comment |
$begingroup$
$$lim_{nto infty}x_{n}{=lim_{nto infty}sum_{k=np}^{nq+1}{1over k}\=lim_{nto infty}sum_{k=np}^{nq+1}{nover k}cdot {1over n}\=lim_{nto infty}sum_{k=np}^{nq+1}{1over{kover n}}cdot {1over n}\=int_p^q{dxover x}\=ln {qover p}}$$
$endgroup$
add a comment |
$begingroup$
Some additional transformation have indeed to be made: you got
$x_n=frac{1}{n}sum_{k=1}^{n(q-p)}frac{1}{p+frac{k}{n}}$; we can continue by writing
$$
x_n=frac{q-p}{nleft(q-pright)}sum_{k=1}^{n(q-p)}frac{1}{p+frac{kleft(q-pright)}{nleft(q-pright)}}= left(q-pright)frac 1{N_n}sum_{k=1}^{N_n}fleft(frac{k}{N_n}right)
$$
where $N_n=n (q-p)$ and $fcolon xmapsto 1/left(p+x(q-p)right)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061746%2flimit-of-x-n-sum-k-np1nq-frac1k-using-riemann-sum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We just have to calculate $int_0^{q-p}$ instead of $int_0^1$. Then, with
$$f(x)=frac{1}{p+x}$$
$$int_0^{q-p}frac{1}{p+x}dx=[ln|p+x|]_0^{q-p}=ln|p+q-p|-ln|p|=lnfrac{q}{p}$$
And we are done.
$endgroup$
add a comment |
$begingroup$
We just have to calculate $int_0^{q-p}$ instead of $int_0^1$. Then, with
$$f(x)=frac{1}{p+x}$$
$$int_0^{q-p}frac{1}{p+x}dx=[ln|p+x|]_0^{q-p}=ln|p+q-p|-ln|p|=lnfrac{q}{p}$$
And we are done.
$endgroup$
add a comment |
$begingroup$
We just have to calculate $int_0^{q-p}$ instead of $int_0^1$. Then, with
$$f(x)=frac{1}{p+x}$$
$$int_0^{q-p}frac{1}{p+x}dx=[ln|p+x|]_0^{q-p}=ln|p+q-p|-ln|p|=lnfrac{q}{p}$$
And we are done.
$endgroup$
We just have to calculate $int_0^{q-p}$ instead of $int_0^1$. Then, with
$$f(x)=frac{1}{p+x}$$
$$int_0^{q-p}frac{1}{p+x}dx=[ln|p+x|]_0^{q-p}=ln|p+q-p|-ln|p|=lnfrac{q}{p}$$
And we are done.
answered Jan 4 at 15:45
GibbsGibbs
137111
137111
add a comment |
add a comment |
$begingroup$
$$lim_{nto infty}x_{n}{=lim_{nto infty}sum_{k=np}^{nq+1}{1over k}\=lim_{nto infty}sum_{k=np}^{nq+1}{nover k}cdot {1over n}\=lim_{nto infty}sum_{k=np}^{nq+1}{1over{kover n}}cdot {1over n}\=int_p^q{dxover x}\=ln {qover p}}$$
$endgroup$
add a comment |
$begingroup$
$$lim_{nto infty}x_{n}{=lim_{nto infty}sum_{k=np}^{nq+1}{1over k}\=lim_{nto infty}sum_{k=np}^{nq+1}{nover k}cdot {1over n}\=lim_{nto infty}sum_{k=np}^{nq+1}{1over{kover n}}cdot {1over n}\=int_p^q{dxover x}\=ln {qover p}}$$
$endgroup$
add a comment |
$begingroup$
$$lim_{nto infty}x_{n}{=lim_{nto infty}sum_{k=np}^{nq+1}{1over k}\=lim_{nto infty}sum_{k=np}^{nq+1}{nover k}cdot {1over n}\=lim_{nto infty}sum_{k=np}^{nq+1}{1over{kover n}}cdot {1over n}\=int_p^q{dxover x}\=ln {qover p}}$$
$endgroup$
$$lim_{nto infty}x_{n}{=lim_{nto infty}sum_{k=np}^{nq+1}{1over k}\=lim_{nto infty}sum_{k=np}^{nq+1}{nover k}cdot {1over n}\=lim_{nto infty}sum_{k=np}^{nq+1}{1over{kover n}}cdot {1over n}\=int_p^q{dxover x}\=ln {qover p}}$$
answered Jan 5 at 6:57
Mostafa AyazMostafa Ayaz
18.2k31040
18.2k31040
add a comment |
add a comment |
$begingroup$
Some additional transformation have indeed to be made: you got
$x_n=frac{1}{n}sum_{k=1}^{n(q-p)}frac{1}{p+frac{k}{n}}$; we can continue by writing
$$
x_n=frac{q-p}{nleft(q-pright)}sum_{k=1}^{n(q-p)}frac{1}{p+frac{kleft(q-pright)}{nleft(q-pright)}}= left(q-pright)frac 1{N_n}sum_{k=1}^{N_n}fleft(frac{k}{N_n}right)
$$
where $N_n=n (q-p)$ and $fcolon xmapsto 1/left(p+x(q-p)right)$.
$endgroup$
add a comment |
$begingroup$
Some additional transformation have indeed to be made: you got
$x_n=frac{1}{n}sum_{k=1}^{n(q-p)}frac{1}{p+frac{k}{n}}$; we can continue by writing
$$
x_n=frac{q-p}{nleft(q-pright)}sum_{k=1}^{n(q-p)}frac{1}{p+frac{kleft(q-pright)}{nleft(q-pright)}}= left(q-pright)frac 1{N_n}sum_{k=1}^{N_n}fleft(frac{k}{N_n}right)
$$
where $N_n=n (q-p)$ and $fcolon xmapsto 1/left(p+x(q-p)right)$.
$endgroup$
add a comment |
$begingroup$
Some additional transformation have indeed to be made: you got
$x_n=frac{1}{n}sum_{k=1}^{n(q-p)}frac{1}{p+frac{k}{n}}$; we can continue by writing
$$
x_n=frac{q-p}{nleft(q-pright)}sum_{k=1}^{n(q-p)}frac{1}{p+frac{kleft(q-pright)}{nleft(q-pright)}}= left(q-pright)frac 1{N_n}sum_{k=1}^{N_n}fleft(frac{k}{N_n}right)
$$
where $N_n=n (q-p)$ and $fcolon xmapsto 1/left(p+x(q-p)right)$.
$endgroup$
Some additional transformation have indeed to be made: you got
$x_n=frac{1}{n}sum_{k=1}^{n(q-p)}frac{1}{p+frac{k}{n}}$; we can continue by writing
$$
x_n=frac{q-p}{nleft(q-pright)}sum_{k=1}^{n(q-p)}frac{1}{p+frac{kleft(q-pright)}{nleft(q-pright)}}= left(q-pright)frac 1{N_n}sum_{k=1}^{N_n}fleft(frac{k}{N_n}right)
$$
where $N_n=n (q-p)$ and $fcolon xmapsto 1/left(p+x(q-p)right)$.
answered Jan 5 at 13:16
Davide GiraudoDavide Giraudo
128k17156268
128k17156268
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061746%2flimit-of-x-n-sum-k-np1nq-frac1k-using-riemann-sum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown