How to prove...
$begingroup$
Question:
let $a,b,c>0$,show that:
$$sqrt{frac{ab}{2a^2+bc+ca}}+sqrt{frac{bc}{2b^2+ca+ab}}+sqrt{frac{ca}{2c^2+ab+bc}}gefrac{81}{2}cdotfrac{abc}{(a+b+c)^3}$$
maybe this inequality can Use Holder inequality to solve it
$$left(sum_{cyc}sqrt{dfrac{ab}{2a^2+bc+ca}}right)^2sum_{cyc}(2a^2+bc+ca)ge(sum_{cyc}sqrt[3]{ab})^3$$
then I can't prove it
inequality a.m.-g.m.-inequality cauchy-schwarz-inequality uvw
$endgroup$
add a comment |
$begingroup$
Question:
let $a,b,c>0$,show that:
$$sqrt{frac{ab}{2a^2+bc+ca}}+sqrt{frac{bc}{2b^2+ca+ab}}+sqrt{frac{ca}{2c^2+ab+bc}}gefrac{81}{2}cdotfrac{abc}{(a+b+c)^3}$$
maybe this inequality can Use Holder inequality to solve it
$$left(sum_{cyc}sqrt{dfrac{ab}{2a^2+bc+ca}}right)^2sum_{cyc}(2a^2+bc+ca)ge(sum_{cyc}sqrt[3]{ab})^3$$
then I can't prove it
inequality a.m.-g.m.-inequality cauchy-schwarz-inequality uvw
$endgroup$
add a comment |
$begingroup$
Question:
let $a,b,c>0$,show that:
$$sqrt{frac{ab}{2a^2+bc+ca}}+sqrt{frac{bc}{2b^2+ca+ab}}+sqrt{frac{ca}{2c^2+ab+bc}}gefrac{81}{2}cdotfrac{abc}{(a+b+c)^3}$$
maybe this inequality can Use Holder inequality to solve it
$$left(sum_{cyc}sqrt{dfrac{ab}{2a^2+bc+ca}}right)^2sum_{cyc}(2a^2+bc+ca)ge(sum_{cyc}sqrt[3]{ab})^3$$
then I can't prove it
inequality a.m.-g.m.-inequality cauchy-schwarz-inequality uvw
$endgroup$
Question:
let $a,b,c>0$,show that:
$$sqrt{frac{ab}{2a^2+bc+ca}}+sqrt{frac{bc}{2b^2+ca+ab}}+sqrt{frac{ca}{2c^2+ab+bc}}gefrac{81}{2}cdotfrac{abc}{(a+b+c)^3}$$
maybe this inequality can Use Holder inequality to solve it
$$left(sum_{cyc}sqrt{dfrac{ab}{2a^2+bc+ca}}right)^2sum_{cyc}(2a^2+bc+ca)ge(sum_{cyc}sqrt[3]{ab})^3$$
then I can't prove it
inequality a.m.-g.m.-inequality cauchy-schwarz-inequality uvw
inequality a.m.-g.m.-inequality cauchy-schwarz-inequality uvw
edited Dec 19 '18 at 18:53
Michael Rozenberg
106k1893198
106k1893198
asked May 18 '14 at 8:53
china mathchina math
10.2k631118
10.2k631118
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We can use also, AM-GM, C-S and uvw.
Indeed, $$sum_{cyc}sqrt{frac{ab}{2a^2+bc+ca}}=sum_{cyc}frac{4ab}{2sqrt{4ab(2a^2+bc+ca)}}geq$$
$$geqsum_{cyc}frac{4ab}{2a^2+bc+ca+4ab}=sum_{cyc}frac{4b^2}{frac{b}{a}(2a^2+bc+ca+4ab)}geq$$
$$geqfrac{4(a+b+c)^2}{sumlimits_{cyc}frac{b}{a}(2a^2+bc+ca+4ab)}.$$
Thus, it's enough to prove that
$$8(a+b+c)^5geq81sum_{cyc}b^2c(2a^2+bc+ca+4ab)$$ or
$$8(a+b+c)^5geq81sum_{cyc}(a^3b^2+4a^3bc+3a^2b^2c)$$ or
$$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+3a^2b^2c)+81sum_{cyc}a^3c^2geq0.$$
But by Rearrangement
$$sum_{cyc}a^3c^2=a^2b^2c^2sum_{cyc}frac{a}{b^2}geq a^2b^2c^2sum_{cyc}left(acdotfrac{1}{a^2}right)=sum_{cyc}a^2b^2c.$$
Id east, it's enough to prove that
$$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+2a^2b^2c)geq0.$$
Now, let $a+b+c=3u$, $ab+ac+bc=3v^2$ and $abc=w^3$.
Thus, we need to prove a linear inequality of $w^3$, which says that it's enough to prove
the last inequality for an extreme value of $w^3,$ which happens in the following cases.
$w^3rightarrow0^+$.
Let $crightarrow0^+$ and $b=1$.
Thus, we need to prove that
$$8(a+1)^5geq81a^2(a+1),$$ which is true by AM-GM:
$$8(a+1)^5=8(a+1)^4(a+1)geq8left(2sqrt{a}right)^4(a+1)=128a^2(a+1)>81a^2(a+1);$$
2. $b=c=1$.
We need to prove that
$$8(a+2)^5geq81(2a^3+2a^2+2+4a^3+8a+4a^2+2a)$$ or
$$(a-1)^2(4a^3+48a^2+9a+47)geq0.$$
Done!
$endgroup$
add a comment |
$begingroup$
By Hölder's inequality we have $$left(sum_{cyc}sqrt{frac{a}{2bc + ca + abc}}right)^2 cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right) geq 27$$ Hence it suffices to prove that $$27 geq frac{81}{2} cdot frac{abc}{(a + b + c)^3} cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right)$$ which is obvious after homogenization and expansion
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f800082%2fhow-to-prove-sqrt-fracab2a2bcca-sqrt-fracbc2b2caab-sqrt-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We can use also, AM-GM, C-S and uvw.
Indeed, $$sum_{cyc}sqrt{frac{ab}{2a^2+bc+ca}}=sum_{cyc}frac{4ab}{2sqrt{4ab(2a^2+bc+ca)}}geq$$
$$geqsum_{cyc}frac{4ab}{2a^2+bc+ca+4ab}=sum_{cyc}frac{4b^2}{frac{b}{a}(2a^2+bc+ca+4ab)}geq$$
$$geqfrac{4(a+b+c)^2}{sumlimits_{cyc}frac{b}{a}(2a^2+bc+ca+4ab)}.$$
Thus, it's enough to prove that
$$8(a+b+c)^5geq81sum_{cyc}b^2c(2a^2+bc+ca+4ab)$$ or
$$8(a+b+c)^5geq81sum_{cyc}(a^3b^2+4a^3bc+3a^2b^2c)$$ or
$$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+3a^2b^2c)+81sum_{cyc}a^3c^2geq0.$$
But by Rearrangement
$$sum_{cyc}a^3c^2=a^2b^2c^2sum_{cyc}frac{a}{b^2}geq a^2b^2c^2sum_{cyc}left(acdotfrac{1}{a^2}right)=sum_{cyc}a^2b^2c.$$
Id east, it's enough to prove that
$$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+2a^2b^2c)geq0.$$
Now, let $a+b+c=3u$, $ab+ac+bc=3v^2$ and $abc=w^3$.
Thus, we need to prove a linear inequality of $w^3$, which says that it's enough to prove
the last inequality for an extreme value of $w^3,$ which happens in the following cases.
$w^3rightarrow0^+$.
Let $crightarrow0^+$ and $b=1$.
Thus, we need to prove that
$$8(a+1)^5geq81a^2(a+1),$$ which is true by AM-GM:
$$8(a+1)^5=8(a+1)^4(a+1)geq8left(2sqrt{a}right)^4(a+1)=128a^2(a+1)>81a^2(a+1);$$
2. $b=c=1$.
We need to prove that
$$8(a+2)^5geq81(2a^3+2a^2+2+4a^3+8a+4a^2+2a)$$ or
$$(a-1)^2(4a^3+48a^2+9a+47)geq0.$$
Done!
$endgroup$
add a comment |
$begingroup$
We can use also, AM-GM, C-S and uvw.
Indeed, $$sum_{cyc}sqrt{frac{ab}{2a^2+bc+ca}}=sum_{cyc}frac{4ab}{2sqrt{4ab(2a^2+bc+ca)}}geq$$
$$geqsum_{cyc}frac{4ab}{2a^2+bc+ca+4ab}=sum_{cyc}frac{4b^2}{frac{b}{a}(2a^2+bc+ca+4ab)}geq$$
$$geqfrac{4(a+b+c)^2}{sumlimits_{cyc}frac{b}{a}(2a^2+bc+ca+4ab)}.$$
Thus, it's enough to prove that
$$8(a+b+c)^5geq81sum_{cyc}b^2c(2a^2+bc+ca+4ab)$$ or
$$8(a+b+c)^5geq81sum_{cyc}(a^3b^2+4a^3bc+3a^2b^2c)$$ or
$$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+3a^2b^2c)+81sum_{cyc}a^3c^2geq0.$$
But by Rearrangement
$$sum_{cyc}a^3c^2=a^2b^2c^2sum_{cyc}frac{a}{b^2}geq a^2b^2c^2sum_{cyc}left(acdotfrac{1}{a^2}right)=sum_{cyc}a^2b^2c.$$
Id east, it's enough to prove that
$$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+2a^2b^2c)geq0.$$
Now, let $a+b+c=3u$, $ab+ac+bc=3v^2$ and $abc=w^3$.
Thus, we need to prove a linear inequality of $w^3$, which says that it's enough to prove
the last inequality for an extreme value of $w^3,$ which happens in the following cases.
$w^3rightarrow0^+$.
Let $crightarrow0^+$ and $b=1$.
Thus, we need to prove that
$$8(a+1)^5geq81a^2(a+1),$$ which is true by AM-GM:
$$8(a+1)^5=8(a+1)^4(a+1)geq8left(2sqrt{a}right)^4(a+1)=128a^2(a+1)>81a^2(a+1);$$
2. $b=c=1$.
We need to prove that
$$8(a+2)^5geq81(2a^3+2a^2+2+4a^3+8a+4a^2+2a)$$ or
$$(a-1)^2(4a^3+48a^2+9a+47)geq0.$$
Done!
$endgroup$
add a comment |
$begingroup$
We can use also, AM-GM, C-S and uvw.
Indeed, $$sum_{cyc}sqrt{frac{ab}{2a^2+bc+ca}}=sum_{cyc}frac{4ab}{2sqrt{4ab(2a^2+bc+ca)}}geq$$
$$geqsum_{cyc}frac{4ab}{2a^2+bc+ca+4ab}=sum_{cyc}frac{4b^2}{frac{b}{a}(2a^2+bc+ca+4ab)}geq$$
$$geqfrac{4(a+b+c)^2}{sumlimits_{cyc}frac{b}{a}(2a^2+bc+ca+4ab)}.$$
Thus, it's enough to prove that
$$8(a+b+c)^5geq81sum_{cyc}b^2c(2a^2+bc+ca+4ab)$$ or
$$8(a+b+c)^5geq81sum_{cyc}(a^3b^2+4a^3bc+3a^2b^2c)$$ or
$$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+3a^2b^2c)+81sum_{cyc}a^3c^2geq0.$$
But by Rearrangement
$$sum_{cyc}a^3c^2=a^2b^2c^2sum_{cyc}frac{a}{b^2}geq a^2b^2c^2sum_{cyc}left(acdotfrac{1}{a^2}right)=sum_{cyc}a^2b^2c.$$
Id east, it's enough to prove that
$$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+2a^2b^2c)geq0.$$
Now, let $a+b+c=3u$, $ab+ac+bc=3v^2$ and $abc=w^3$.
Thus, we need to prove a linear inequality of $w^3$, which says that it's enough to prove
the last inequality for an extreme value of $w^3,$ which happens in the following cases.
$w^3rightarrow0^+$.
Let $crightarrow0^+$ and $b=1$.
Thus, we need to prove that
$$8(a+1)^5geq81a^2(a+1),$$ which is true by AM-GM:
$$8(a+1)^5=8(a+1)^4(a+1)geq8left(2sqrt{a}right)^4(a+1)=128a^2(a+1)>81a^2(a+1);$$
2. $b=c=1$.
We need to prove that
$$8(a+2)^5geq81(2a^3+2a^2+2+4a^3+8a+4a^2+2a)$$ or
$$(a-1)^2(4a^3+48a^2+9a+47)geq0.$$
Done!
$endgroup$
We can use also, AM-GM, C-S and uvw.
Indeed, $$sum_{cyc}sqrt{frac{ab}{2a^2+bc+ca}}=sum_{cyc}frac{4ab}{2sqrt{4ab(2a^2+bc+ca)}}geq$$
$$geqsum_{cyc}frac{4ab}{2a^2+bc+ca+4ab}=sum_{cyc}frac{4b^2}{frac{b}{a}(2a^2+bc+ca+4ab)}geq$$
$$geqfrac{4(a+b+c)^2}{sumlimits_{cyc}frac{b}{a}(2a^2+bc+ca+4ab)}.$$
Thus, it's enough to prove that
$$8(a+b+c)^5geq81sum_{cyc}b^2c(2a^2+bc+ca+4ab)$$ or
$$8(a+b+c)^5geq81sum_{cyc}(a^3b^2+4a^3bc+3a^2b^2c)$$ or
$$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+3a^2b^2c)+81sum_{cyc}a^3c^2geq0.$$
But by Rearrangement
$$sum_{cyc}a^3c^2=a^2b^2c^2sum_{cyc}frac{a}{b^2}geq a^2b^2c^2sum_{cyc}left(acdotfrac{1}{a^2}right)=sum_{cyc}a^2b^2c.$$
Id east, it's enough to prove that
$$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+2a^2b^2c)geq0.$$
Now, let $a+b+c=3u$, $ab+ac+bc=3v^2$ and $abc=w^3$.
Thus, we need to prove a linear inequality of $w^3$, which says that it's enough to prove
the last inequality for an extreme value of $w^3,$ which happens in the following cases.
$w^3rightarrow0^+$.
Let $crightarrow0^+$ and $b=1$.
Thus, we need to prove that
$$8(a+1)^5geq81a^2(a+1),$$ which is true by AM-GM:
$$8(a+1)^5=8(a+1)^4(a+1)geq8left(2sqrt{a}right)^4(a+1)=128a^2(a+1)>81a^2(a+1);$$
2. $b=c=1$.
We need to prove that
$$8(a+2)^5geq81(2a^3+2a^2+2+4a^3+8a+4a^2+2a)$$ or
$$(a-1)^2(4a^3+48a^2+9a+47)geq0.$$
Done!
answered Dec 19 '18 at 18:52
Michael RozenbergMichael Rozenberg
106k1893198
106k1893198
add a comment |
add a comment |
$begingroup$
By Hölder's inequality we have $$left(sum_{cyc}sqrt{frac{a}{2bc + ca + abc}}right)^2 cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right) geq 27$$ Hence it suffices to prove that $$27 geq frac{81}{2} cdot frac{abc}{(a + b + c)^3} cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right)$$ which is obvious after homogenization and expansion
$endgroup$
add a comment |
$begingroup$
By Hölder's inequality we have $$left(sum_{cyc}sqrt{frac{a}{2bc + ca + abc}}right)^2 cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right) geq 27$$ Hence it suffices to prove that $$27 geq frac{81}{2} cdot frac{abc}{(a + b + c)^3} cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right)$$ which is obvious after homogenization and expansion
$endgroup$
add a comment |
$begingroup$
By Hölder's inequality we have $$left(sum_{cyc}sqrt{frac{a}{2bc + ca + abc}}right)^2 cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right) geq 27$$ Hence it suffices to prove that $$27 geq frac{81}{2} cdot frac{abc}{(a + b + c)^3} cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right)$$ which is obvious after homogenization and expansion
$endgroup$
By Hölder's inequality we have $$left(sum_{cyc}sqrt{frac{a}{2bc + ca + abc}}right)^2 cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right) geq 27$$ Hence it suffices to prove that $$27 geq frac{81}{2} cdot frac{abc}{(a + b + c)^3} cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right)$$ which is obvious after homogenization and expansion
answered May 24 '14 at 8:27
math110math110
32.6k458219
32.6k458219
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f800082%2fhow-to-prove-sqrt-fracab2a2bcca-sqrt-fracbc2b2caab-sqrt-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown