How to prove...












2












$begingroup$


Question:




let $a,b,c>0$,show that:



$$sqrt{frac{ab}{2a^2+bc+ca}}+sqrt{frac{bc}{2b^2+ca+ab}}+sqrt{frac{ca}{2c^2+ab+bc}}gefrac{81}{2}cdotfrac{abc}{(a+b+c)^3}$$




maybe this inequality can Use Holder inequality to solve it
$$left(sum_{cyc}sqrt{dfrac{ab}{2a^2+bc+ca}}right)^2sum_{cyc}(2a^2+bc+ca)ge(sum_{cyc}sqrt[3]{ab})^3$$



then I can't prove it










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    Question:




    let $a,b,c>0$,show that:



    $$sqrt{frac{ab}{2a^2+bc+ca}}+sqrt{frac{bc}{2b^2+ca+ab}}+sqrt{frac{ca}{2c^2+ab+bc}}gefrac{81}{2}cdotfrac{abc}{(a+b+c)^3}$$




    maybe this inequality can Use Holder inequality to solve it
    $$left(sum_{cyc}sqrt{dfrac{ab}{2a^2+bc+ca}}right)^2sum_{cyc}(2a^2+bc+ca)ge(sum_{cyc}sqrt[3]{ab})^3$$



    then I can't prove it










    share|cite|improve this question











    $endgroup$















      2












      2








      2


      1



      $begingroup$


      Question:




      let $a,b,c>0$,show that:



      $$sqrt{frac{ab}{2a^2+bc+ca}}+sqrt{frac{bc}{2b^2+ca+ab}}+sqrt{frac{ca}{2c^2+ab+bc}}gefrac{81}{2}cdotfrac{abc}{(a+b+c)^3}$$




      maybe this inequality can Use Holder inequality to solve it
      $$left(sum_{cyc}sqrt{dfrac{ab}{2a^2+bc+ca}}right)^2sum_{cyc}(2a^2+bc+ca)ge(sum_{cyc}sqrt[3]{ab})^3$$



      then I can't prove it










      share|cite|improve this question











      $endgroup$




      Question:




      let $a,b,c>0$,show that:



      $$sqrt{frac{ab}{2a^2+bc+ca}}+sqrt{frac{bc}{2b^2+ca+ab}}+sqrt{frac{ca}{2c^2+ab+bc}}gefrac{81}{2}cdotfrac{abc}{(a+b+c)^3}$$




      maybe this inequality can Use Holder inequality to solve it
      $$left(sum_{cyc}sqrt{dfrac{ab}{2a^2+bc+ca}}right)^2sum_{cyc}(2a^2+bc+ca)ge(sum_{cyc}sqrt[3]{ab})^3$$



      then I can't prove it







      inequality a.m.-g.m.-inequality cauchy-schwarz-inequality uvw






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 19 '18 at 18:53









      Michael Rozenberg

      106k1893198




      106k1893198










      asked May 18 '14 at 8:53









      china mathchina math

      10.2k631118




      10.2k631118






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          We can use also, AM-GM, C-S and uvw.



          Indeed, $$sum_{cyc}sqrt{frac{ab}{2a^2+bc+ca}}=sum_{cyc}frac{4ab}{2sqrt{4ab(2a^2+bc+ca)}}geq$$
          $$geqsum_{cyc}frac{4ab}{2a^2+bc+ca+4ab}=sum_{cyc}frac{4b^2}{frac{b}{a}(2a^2+bc+ca+4ab)}geq$$
          $$geqfrac{4(a+b+c)^2}{sumlimits_{cyc}frac{b}{a}(2a^2+bc+ca+4ab)}.$$
          Thus, it's enough to prove that
          $$8(a+b+c)^5geq81sum_{cyc}b^2c(2a^2+bc+ca+4ab)$$ or
          $$8(a+b+c)^5geq81sum_{cyc}(a^3b^2+4a^3bc+3a^2b^2c)$$ or
          $$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+3a^2b^2c)+81sum_{cyc}a^3c^2geq0.$$
          But by Rearrangement
          $$sum_{cyc}a^3c^2=a^2b^2c^2sum_{cyc}frac{a}{b^2}geq a^2b^2c^2sum_{cyc}left(acdotfrac{1}{a^2}right)=sum_{cyc}a^2b^2c.$$
          Id east, it's enough to prove that
          $$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+2a^2b^2c)geq0.$$
          Now, let $a+b+c=3u$, $ab+ac+bc=3v^2$ and $abc=w^3$.



          Thus, we need to prove a linear inequality of $w^3$, which says that it's enough to prove



          the last inequality for an extreme value of $w^3,$ which happens in the following cases.





          1. $w^3rightarrow0^+$.


          Let $crightarrow0^+$ and $b=1$.



          Thus, we need to prove that
          $$8(a+1)^5geq81a^2(a+1),$$ which is true by AM-GM:
          $$8(a+1)^5=8(a+1)^4(a+1)geq8left(2sqrt{a}right)^4(a+1)=128a^2(a+1)>81a^2(a+1);$$
          2. $b=c=1$.



          We need to prove that
          $$8(a+2)^5geq81(2a^3+2a^2+2+4a^3+8a+4a^2+2a)$$ or
          $$(a-1)^2(4a^3+48a^2+9a+47)geq0.$$
          Done!






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            By Hölder's inequality we have $$left(sum_{cyc}sqrt{frac{a}{2bc + ca + abc}}right)^2 cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right) geq 27$$ Hence it suffices to prove that $$27 geq frac{81}{2} cdot frac{abc}{(a + b + c)^3} cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right)$$ which is obvious after homogenization and expansion






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f800082%2fhow-to-prove-sqrt-fracab2a2bcca-sqrt-fracbc2b2caab-sqrt-f%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              We can use also, AM-GM, C-S and uvw.



              Indeed, $$sum_{cyc}sqrt{frac{ab}{2a^2+bc+ca}}=sum_{cyc}frac{4ab}{2sqrt{4ab(2a^2+bc+ca)}}geq$$
              $$geqsum_{cyc}frac{4ab}{2a^2+bc+ca+4ab}=sum_{cyc}frac{4b^2}{frac{b}{a}(2a^2+bc+ca+4ab)}geq$$
              $$geqfrac{4(a+b+c)^2}{sumlimits_{cyc}frac{b}{a}(2a^2+bc+ca+4ab)}.$$
              Thus, it's enough to prove that
              $$8(a+b+c)^5geq81sum_{cyc}b^2c(2a^2+bc+ca+4ab)$$ or
              $$8(a+b+c)^5geq81sum_{cyc}(a^3b^2+4a^3bc+3a^2b^2c)$$ or
              $$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+3a^2b^2c)+81sum_{cyc}a^3c^2geq0.$$
              But by Rearrangement
              $$sum_{cyc}a^3c^2=a^2b^2c^2sum_{cyc}frac{a}{b^2}geq a^2b^2c^2sum_{cyc}left(acdotfrac{1}{a^2}right)=sum_{cyc}a^2b^2c.$$
              Id east, it's enough to prove that
              $$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+2a^2b^2c)geq0.$$
              Now, let $a+b+c=3u$, $ab+ac+bc=3v^2$ and $abc=w^3$.



              Thus, we need to prove a linear inequality of $w^3$, which says that it's enough to prove



              the last inequality for an extreme value of $w^3,$ which happens in the following cases.





              1. $w^3rightarrow0^+$.


              Let $crightarrow0^+$ and $b=1$.



              Thus, we need to prove that
              $$8(a+1)^5geq81a^2(a+1),$$ which is true by AM-GM:
              $$8(a+1)^5=8(a+1)^4(a+1)geq8left(2sqrt{a}right)^4(a+1)=128a^2(a+1)>81a^2(a+1);$$
              2. $b=c=1$.



              We need to prove that
              $$8(a+2)^5geq81(2a^3+2a^2+2+4a^3+8a+4a^2+2a)$$ or
              $$(a-1)^2(4a^3+48a^2+9a+47)geq0.$$
              Done!






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                We can use also, AM-GM, C-S and uvw.



                Indeed, $$sum_{cyc}sqrt{frac{ab}{2a^2+bc+ca}}=sum_{cyc}frac{4ab}{2sqrt{4ab(2a^2+bc+ca)}}geq$$
                $$geqsum_{cyc}frac{4ab}{2a^2+bc+ca+4ab}=sum_{cyc}frac{4b^2}{frac{b}{a}(2a^2+bc+ca+4ab)}geq$$
                $$geqfrac{4(a+b+c)^2}{sumlimits_{cyc}frac{b}{a}(2a^2+bc+ca+4ab)}.$$
                Thus, it's enough to prove that
                $$8(a+b+c)^5geq81sum_{cyc}b^2c(2a^2+bc+ca+4ab)$$ or
                $$8(a+b+c)^5geq81sum_{cyc}(a^3b^2+4a^3bc+3a^2b^2c)$$ or
                $$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+3a^2b^2c)+81sum_{cyc}a^3c^2geq0.$$
                But by Rearrangement
                $$sum_{cyc}a^3c^2=a^2b^2c^2sum_{cyc}frac{a}{b^2}geq a^2b^2c^2sum_{cyc}left(acdotfrac{1}{a^2}right)=sum_{cyc}a^2b^2c.$$
                Id east, it's enough to prove that
                $$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+2a^2b^2c)geq0.$$
                Now, let $a+b+c=3u$, $ab+ac+bc=3v^2$ and $abc=w^3$.



                Thus, we need to prove a linear inequality of $w^3$, which says that it's enough to prove



                the last inequality for an extreme value of $w^3,$ which happens in the following cases.





                1. $w^3rightarrow0^+$.


                Let $crightarrow0^+$ and $b=1$.



                Thus, we need to prove that
                $$8(a+1)^5geq81a^2(a+1),$$ which is true by AM-GM:
                $$8(a+1)^5=8(a+1)^4(a+1)geq8left(2sqrt{a}right)^4(a+1)=128a^2(a+1)>81a^2(a+1);$$
                2. $b=c=1$.



                We need to prove that
                $$8(a+2)^5geq81(2a^3+2a^2+2+4a^3+8a+4a^2+2a)$$ or
                $$(a-1)^2(4a^3+48a^2+9a+47)geq0.$$
                Done!






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  We can use also, AM-GM, C-S and uvw.



                  Indeed, $$sum_{cyc}sqrt{frac{ab}{2a^2+bc+ca}}=sum_{cyc}frac{4ab}{2sqrt{4ab(2a^2+bc+ca)}}geq$$
                  $$geqsum_{cyc}frac{4ab}{2a^2+bc+ca+4ab}=sum_{cyc}frac{4b^2}{frac{b}{a}(2a^2+bc+ca+4ab)}geq$$
                  $$geqfrac{4(a+b+c)^2}{sumlimits_{cyc}frac{b}{a}(2a^2+bc+ca+4ab)}.$$
                  Thus, it's enough to prove that
                  $$8(a+b+c)^5geq81sum_{cyc}b^2c(2a^2+bc+ca+4ab)$$ or
                  $$8(a+b+c)^5geq81sum_{cyc}(a^3b^2+4a^3bc+3a^2b^2c)$$ or
                  $$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+3a^2b^2c)+81sum_{cyc}a^3c^2geq0.$$
                  But by Rearrangement
                  $$sum_{cyc}a^3c^2=a^2b^2c^2sum_{cyc}frac{a}{b^2}geq a^2b^2c^2sum_{cyc}left(acdotfrac{1}{a^2}right)=sum_{cyc}a^2b^2c.$$
                  Id east, it's enough to prove that
                  $$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+2a^2b^2c)geq0.$$
                  Now, let $a+b+c=3u$, $ab+ac+bc=3v^2$ and $abc=w^3$.



                  Thus, we need to prove a linear inequality of $w^3$, which says that it's enough to prove



                  the last inequality for an extreme value of $w^3,$ which happens in the following cases.





                  1. $w^3rightarrow0^+$.


                  Let $crightarrow0^+$ and $b=1$.



                  Thus, we need to prove that
                  $$8(a+1)^5geq81a^2(a+1),$$ which is true by AM-GM:
                  $$8(a+1)^5=8(a+1)^4(a+1)geq8left(2sqrt{a}right)^4(a+1)=128a^2(a+1)>81a^2(a+1);$$
                  2. $b=c=1$.



                  We need to prove that
                  $$8(a+2)^5geq81(2a^3+2a^2+2+4a^3+8a+4a^2+2a)$$ or
                  $$(a-1)^2(4a^3+48a^2+9a+47)geq0.$$
                  Done!






                  share|cite|improve this answer









                  $endgroup$



                  We can use also, AM-GM, C-S and uvw.



                  Indeed, $$sum_{cyc}sqrt{frac{ab}{2a^2+bc+ca}}=sum_{cyc}frac{4ab}{2sqrt{4ab(2a^2+bc+ca)}}geq$$
                  $$geqsum_{cyc}frac{4ab}{2a^2+bc+ca+4ab}=sum_{cyc}frac{4b^2}{frac{b}{a}(2a^2+bc+ca+4ab)}geq$$
                  $$geqfrac{4(a+b+c)^2}{sumlimits_{cyc}frac{b}{a}(2a^2+bc+ca+4ab)}.$$
                  Thus, it's enough to prove that
                  $$8(a+b+c)^5geq81sum_{cyc}b^2c(2a^2+bc+ca+4ab)$$ or
                  $$8(a+b+c)^5geq81sum_{cyc}(a^3b^2+4a^3bc+3a^2b^2c)$$ or
                  $$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+3a^2b^2c)+81sum_{cyc}a^3c^2geq0.$$
                  But by Rearrangement
                  $$sum_{cyc}a^3c^2=a^2b^2c^2sum_{cyc}frac{a}{b^2}geq a^2b^2c^2sum_{cyc}left(acdotfrac{1}{a^2}right)=sum_{cyc}a^2b^2c.$$
                  Id east, it's enough to prove that
                  $$8(a+b+c)^5-81sum_{cyc}(a^3b^2+a^3c^2+4a^3bc+2a^2b^2c)geq0.$$
                  Now, let $a+b+c=3u$, $ab+ac+bc=3v^2$ and $abc=w^3$.



                  Thus, we need to prove a linear inequality of $w^3$, which says that it's enough to prove



                  the last inequality for an extreme value of $w^3,$ which happens in the following cases.





                  1. $w^3rightarrow0^+$.


                  Let $crightarrow0^+$ and $b=1$.



                  Thus, we need to prove that
                  $$8(a+1)^5geq81a^2(a+1),$$ which is true by AM-GM:
                  $$8(a+1)^5=8(a+1)^4(a+1)geq8left(2sqrt{a}right)^4(a+1)=128a^2(a+1)>81a^2(a+1);$$
                  2. $b=c=1$.



                  We need to prove that
                  $$8(a+2)^5geq81(2a^3+2a^2+2+4a^3+8a+4a^2+2a)$$ or
                  $$(a-1)^2(4a^3+48a^2+9a+47)geq0.$$
                  Done!







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 19 '18 at 18:52









                  Michael RozenbergMichael Rozenberg

                  106k1893198




                  106k1893198























                      0












                      $begingroup$

                      By Hölder's inequality we have $$left(sum_{cyc}sqrt{frac{a}{2bc + ca + abc}}right)^2 cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right) geq 27$$ Hence it suffices to prove that $$27 geq frac{81}{2} cdot frac{abc}{(a + b + c)^3} cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right)$$ which is obvious after homogenization and expansion






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        By Hölder's inequality we have $$left(sum_{cyc}sqrt{frac{a}{2bc + ca + abc}}right)^2 cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right) geq 27$$ Hence it suffices to prove that $$27 geq frac{81}{2} cdot frac{abc}{(a + b + c)^3} cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right)$$ which is obvious after homogenization and expansion






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          By Hölder's inequality we have $$left(sum_{cyc}sqrt{frac{a}{2bc + ca + abc}}right)^2 cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right) geq 27$$ Hence it suffices to prove that $$27 geq frac{81}{2} cdot frac{abc}{(a + b + c)^3} cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right)$$ which is obvious after homogenization and expansion






                          share|cite|improve this answer









                          $endgroup$



                          By Hölder's inequality we have $$left(sum_{cyc}sqrt{frac{a}{2bc + ca + abc}}right)^2 cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right) geq 27$$ Hence it suffices to prove that $$27 geq frac{81}{2} cdot frac{abc}{(a + b + c)^3} cdot left(sum_{cyc}frac{2bc + ca + abc}{a}right)$$ which is obvious after homogenization and expansion







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered May 24 '14 at 8:27









                          math110math110

                          32.6k458219




                          32.6k458219






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f800082%2fhow-to-prove-sqrt-fracab2a2bcca-sqrt-fracbc2b2caab-sqrt-f%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Probability when a professor distributes a quiz and homework assignment to a class of n students.

                              Aardman Animations

                              Are they similar matrix