Convergence test $sum_{n=1}^{+infty}(-1)^{leftlfloor{sqrt{n}}rightrfloor}frac{1}{ln(n)}$
$begingroup$
How can I try to check the convergence of series
$$
sum_{n=2}^{+infty}(-1)^{leftlfloor{sqrt{n}}rightrfloor}frac{1}{ln(n)}
$$
sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
How can I try to check the convergence of series
$$
sum_{n=2}^{+infty}(-1)^{leftlfloor{sqrt{n}}rightrfloor}frac{1}{ln(n)}
$$
sequences-and-series convergence
$endgroup$
$begingroup$
Are you sure the summation starts from $ n = 1$ ?
$endgroup$
– Ahmad Bazzi
Dec 19 '18 at 19:20
$begingroup$
No, from $n=2$, thanks
$endgroup$
– avan1235
Dec 19 '18 at 19:21
add a comment |
$begingroup$
How can I try to check the convergence of series
$$
sum_{n=2}^{+infty}(-1)^{leftlfloor{sqrt{n}}rightrfloor}frac{1}{ln(n)}
$$
sequences-and-series convergence
$endgroup$
How can I try to check the convergence of series
$$
sum_{n=2}^{+infty}(-1)^{leftlfloor{sqrt{n}}rightrfloor}frac{1}{ln(n)}
$$
sequences-and-series convergence
sequences-and-series convergence
edited Dec 19 '18 at 19:21
avan1235
asked Dec 19 '18 at 19:16
avan1235avan1235
3297
3297
$begingroup$
Are you sure the summation starts from $ n = 1$ ?
$endgroup$
– Ahmad Bazzi
Dec 19 '18 at 19:20
$begingroup$
No, from $n=2$, thanks
$endgroup$
– avan1235
Dec 19 '18 at 19:21
add a comment |
$begingroup$
Are you sure the summation starts from $ n = 1$ ?
$endgroup$
– Ahmad Bazzi
Dec 19 '18 at 19:20
$begingroup$
No, from $n=2$, thanks
$endgroup$
– avan1235
Dec 19 '18 at 19:21
$begingroup$
Are you sure the summation starts from $ n = 1$ ?
$endgroup$
– Ahmad Bazzi
Dec 19 '18 at 19:20
$begingroup$
Are you sure the summation starts from $ n = 1$ ?
$endgroup$
– Ahmad Bazzi
Dec 19 '18 at 19:20
$begingroup$
No, from $n=2$, thanks
$endgroup$
– avan1235
Dec 19 '18 at 19:21
$begingroup$
No, from $n=2$, thanks
$endgroup$
– avan1235
Dec 19 '18 at 19:21
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Use Cauchy's convergence test and consider the following subsums
$$sum_{n=k^2}^{k^2+2k} (-1)^{lfloor sqrt n rfloor} frac{1}{ln(n)}$$
$endgroup$
add a comment |
$begingroup$
We can write the partial sums of the series of interest as
$$begin{align}
sum_{n=4}^{(N+1)^2-1} frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}&=sum_{m=2}^N sum_{n=m^2}^{(m+1)^2-1}frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}\\
&=sum_{m=2}^N (-1)^m sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}tag1
end{align}$$
It is sufficient to show that the sequence $S_m=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}$, on the right-hand side of $(1)$, is increasing (and hence $lim_{mtoinfty}S_mne0$). Proceeding we have the crude estimates
$$begin{align}
S_m-S_{m-1}&=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}-sum_{n=(m-1)^2}^{m^2-1} frac{1}{log(n)}\\
&ge frac{2m+1}{2log(m+1)}-frac{2m-1}{2log(m-1)}\\
&=frac{(m+1/2)log(m-1)-(m-1/2)log(m+1)}{log(m+1)log(m-1)}tag2
end{align}$$
We can estimate the numerator, $T_m$, of the expression on the right-hand side of $(2)$, $T_m=(m+1/2)log(m-1)-(m-1/2)log(m+1)$ as
$$begin{align}
T_m&=(m+1/2)log(m-1)-(m-1/2)log(m+1)&\\
&=log(m)+mlogleft(1-frac2{m+1}right)+frac12logleft(1-frac1{m^2}right)\\
&ge log(m)-frac{2m}{m-1}-frac1{m^2}tag3
end{align}$$
From $(3)$, $T_m>0$ whenever $m$ is sufficiently large ($m>9$)$.
And we are done!
$endgroup$
$begingroup$
Just curious ... was there a reason that you revoked accepting this answer?
$endgroup$
– Mark Viola
Dec 23 '18 at 17:00
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046773%2fconvergence-test-sum-n-1-infty-1-left-lfloor-sqrtn-right-rfloor%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Use Cauchy's convergence test and consider the following subsums
$$sum_{n=k^2}^{k^2+2k} (-1)^{lfloor sqrt n rfloor} frac{1}{ln(n)}$$
$endgroup$
add a comment |
$begingroup$
Use Cauchy's convergence test and consider the following subsums
$$sum_{n=k^2}^{k^2+2k} (-1)^{lfloor sqrt n rfloor} frac{1}{ln(n)}$$
$endgroup$
add a comment |
$begingroup$
Use Cauchy's convergence test and consider the following subsums
$$sum_{n=k^2}^{k^2+2k} (-1)^{lfloor sqrt n rfloor} frac{1}{ln(n)}$$
$endgroup$
Use Cauchy's convergence test and consider the following subsums
$$sum_{n=k^2}^{k^2+2k} (-1)^{lfloor sqrt n rfloor} frac{1}{ln(n)}$$
answered Dec 19 '18 at 20:08
Мокин ВасилийМокин Василий
361
361
add a comment |
add a comment |
$begingroup$
We can write the partial sums of the series of interest as
$$begin{align}
sum_{n=4}^{(N+1)^2-1} frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}&=sum_{m=2}^N sum_{n=m^2}^{(m+1)^2-1}frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}\\
&=sum_{m=2}^N (-1)^m sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}tag1
end{align}$$
It is sufficient to show that the sequence $S_m=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}$, on the right-hand side of $(1)$, is increasing (and hence $lim_{mtoinfty}S_mne0$). Proceeding we have the crude estimates
$$begin{align}
S_m-S_{m-1}&=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}-sum_{n=(m-1)^2}^{m^2-1} frac{1}{log(n)}\\
&ge frac{2m+1}{2log(m+1)}-frac{2m-1}{2log(m-1)}\\
&=frac{(m+1/2)log(m-1)-(m-1/2)log(m+1)}{log(m+1)log(m-1)}tag2
end{align}$$
We can estimate the numerator, $T_m$, of the expression on the right-hand side of $(2)$, $T_m=(m+1/2)log(m-1)-(m-1/2)log(m+1)$ as
$$begin{align}
T_m&=(m+1/2)log(m-1)-(m-1/2)log(m+1)&\\
&=log(m)+mlogleft(1-frac2{m+1}right)+frac12logleft(1-frac1{m^2}right)\\
&ge log(m)-frac{2m}{m-1}-frac1{m^2}tag3
end{align}$$
From $(3)$, $T_m>0$ whenever $m$ is sufficiently large ($m>9$)$.
And we are done!
$endgroup$
$begingroup$
Just curious ... was there a reason that you revoked accepting this answer?
$endgroup$
– Mark Viola
Dec 23 '18 at 17:00
add a comment |
$begingroup$
We can write the partial sums of the series of interest as
$$begin{align}
sum_{n=4}^{(N+1)^2-1} frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}&=sum_{m=2}^N sum_{n=m^2}^{(m+1)^2-1}frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}\\
&=sum_{m=2}^N (-1)^m sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}tag1
end{align}$$
It is sufficient to show that the sequence $S_m=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}$, on the right-hand side of $(1)$, is increasing (and hence $lim_{mtoinfty}S_mne0$). Proceeding we have the crude estimates
$$begin{align}
S_m-S_{m-1}&=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}-sum_{n=(m-1)^2}^{m^2-1} frac{1}{log(n)}\\
&ge frac{2m+1}{2log(m+1)}-frac{2m-1}{2log(m-1)}\\
&=frac{(m+1/2)log(m-1)-(m-1/2)log(m+1)}{log(m+1)log(m-1)}tag2
end{align}$$
We can estimate the numerator, $T_m$, of the expression on the right-hand side of $(2)$, $T_m=(m+1/2)log(m-1)-(m-1/2)log(m+1)$ as
$$begin{align}
T_m&=(m+1/2)log(m-1)-(m-1/2)log(m+1)&\\
&=log(m)+mlogleft(1-frac2{m+1}right)+frac12logleft(1-frac1{m^2}right)\\
&ge log(m)-frac{2m}{m-1}-frac1{m^2}tag3
end{align}$$
From $(3)$, $T_m>0$ whenever $m$ is sufficiently large ($m>9$)$.
And we are done!
$endgroup$
$begingroup$
Just curious ... was there a reason that you revoked accepting this answer?
$endgroup$
– Mark Viola
Dec 23 '18 at 17:00
add a comment |
$begingroup$
We can write the partial sums of the series of interest as
$$begin{align}
sum_{n=4}^{(N+1)^2-1} frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}&=sum_{m=2}^N sum_{n=m^2}^{(m+1)^2-1}frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}\\
&=sum_{m=2}^N (-1)^m sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}tag1
end{align}$$
It is sufficient to show that the sequence $S_m=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}$, on the right-hand side of $(1)$, is increasing (and hence $lim_{mtoinfty}S_mne0$). Proceeding we have the crude estimates
$$begin{align}
S_m-S_{m-1}&=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}-sum_{n=(m-1)^2}^{m^2-1} frac{1}{log(n)}\\
&ge frac{2m+1}{2log(m+1)}-frac{2m-1}{2log(m-1)}\\
&=frac{(m+1/2)log(m-1)-(m-1/2)log(m+1)}{log(m+1)log(m-1)}tag2
end{align}$$
We can estimate the numerator, $T_m$, of the expression on the right-hand side of $(2)$, $T_m=(m+1/2)log(m-1)-(m-1/2)log(m+1)$ as
$$begin{align}
T_m&=(m+1/2)log(m-1)-(m-1/2)log(m+1)&\\
&=log(m)+mlogleft(1-frac2{m+1}right)+frac12logleft(1-frac1{m^2}right)\\
&ge log(m)-frac{2m}{m-1}-frac1{m^2}tag3
end{align}$$
From $(3)$, $T_m>0$ whenever $m$ is sufficiently large ($m>9$)$.
And we are done!
$endgroup$
We can write the partial sums of the series of interest as
$$begin{align}
sum_{n=4}^{(N+1)^2-1} frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}&=sum_{m=2}^N sum_{n=m^2}^{(m+1)^2-1}frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}\\
&=sum_{m=2}^N (-1)^m sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}tag1
end{align}$$
It is sufficient to show that the sequence $S_m=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}$, on the right-hand side of $(1)$, is increasing (and hence $lim_{mtoinfty}S_mne0$). Proceeding we have the crude estimates
$$begin{align}
S_m-S_{m-1}&=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}-sum_{n=(m-1)^2}^{m^2-1} frac{1}{log(n)}\\
&ge frac{2m+1}{2log(m+1)}-frac{2m-1}{2log(m-1)}\\
&=frac{(m+1/2)log(m-1)-(m-1/2)log(m+1)}{log(m+1)log(m-1)}tag2
end{align}$$
We can estimate the numerator, $T_m$, of the expression on the right-hand side of $(2)$, $T_m=(m+1/2)log(m-1)-(m-1/2)log(m+1)$ as
$$begin{align}
T_m&=(m+1/2)log(m-1)-(m-1/2)log(m+1)&\\
&=log(m)+mlogleft(1-frac2{m+1}right)+frac12logleft(1-frac1{m^2}right)\\
&ge log(m)-frac{2m}{m-1}-frac1{m^2}tag3
end{align}$$
From $(3)$, $T_m>0$ whenever $m$ is sufficiently large ($m>9$)$.
And we are done!
edited Dec 19 '18 at 21:32
answered Dec 19 '18 at 21:25
Mark ViolaMark Viola
133k1277174
133k1277174
$begingroup$
Just curious ... was there a reason that you revoked accepting this answer?
$endgroup$
– Mark Viola
Dec 23 '18 at 17:00
add a comment |
$begingroup$
Just curious ... was there a reason that you revoked accepting this answer?
$endgroup$
– Mark Viola
Dec 23 '18 at 17:00
$begingroup$
Just curious ... was there a reason that you revoked accepting this answer?
$endgroup$
– Mark Viola
Dec 23 '18 at 17:00
$begingroup$
Just curious ... was there a reason that you revoked accepting this answer?
$endgroup$
– Mark Viola
Dec 23 '18 at 17:00
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046773%2fconvergence-test-sum-n-1-infty-1-left-lfloor-sqrtn-right-rfloor%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Are you sure the summation starts from $ n = 1$ ?
$endgroup$
– Ahmad Bazzi
Dec 19 '18 at 19:20
$begingroup$
No, from $n=2$, thanks
$endgroup$
– avan1235
Dec 19 '18 at 19:21