Homogeneous distribution variance and correlation
$begingroup$
The random variable $X$ has a homogeneous distribution in the interval $(0,1)$ and $Y = X ^ k, k> 0.$ Calculate the variance and the correlation coefficient between the variables $X$ and $Y$.
probability
$endgroup$
add a comment |
$begingroup$
The random variable $X$ has a homogeneous distribution in the interval $(0,1)$ and $Y = X ^ k, k> 0.$ Calculate the variance and the correlation coefficient between the variables $X$ and $Y$.
probability
$endgroup$
add a comment |
$begingroup$
The random variable $X$ has a homogeneous distribution in the interval $(0,1)$ and $Y = X ^ k, k> 0.$ Calculate the variance and the correlation coefficient between the variables $X$ and $Y$.
probability
$endgroup$
The random variable $X$ has a homogeneous distribution in the interval $(0,1)$ and $Y = X ^ k, k> 0.$ Calculate the variance and the correlation coefficient between the variables $X$ and $Y$.
probability
probability
edited Dec 19 '18 at 22:39
dantopa
6,58942244
6,58942244
asked Dec 19 '18 at 18:57
AbakusAbakus
32
32
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
By some integration, we can find all these. Since this is a unit interval, the expected values are the "unweighted" integrals:
$$overline X=E[X]=int_0^1x,dx=frac12left[x^2right]_0^1=frac12$$
$$overline Y=E[Y]=int_0^1x^k,dx=frac1{k+1}left[x^{k+1}right]_0^1=frac1{k+1}$$
and the variances are
$$sigma_X^2=mathrm{Var}(X)=Eleft[(X-overline X)^2right]
=int_0^1left(x-tfrac12right)^2,dx=tfrac13left[left(x-tfrac12right)^3right]_0^1=tfrac1{12}$$
$$sigma_Y^2=mathrm{Var}(Y)=Eleft[(Y-overline Y)^2right]
=int_0^1left(x^k-tfrac1{k+1}right)^2,dx,$$
the latter of which can be found by
first multiplying out and then integrating,
or using $E[Y^2]-E[Y]^2$ then integrating,
and lastly simplifying to get
$$sigma_Y^2=frac{k^2}{(k+1)^2(2k+1)}.$$
Similarly, the covariance is
$$sigma_{XY}=mathrm{Cov}(X,Y)
=Eleft[(X-overline X)(Y-overline Y)right]
=E[XY]-E[X]E[Y]$$
$$=int_0^1x^{k+1},dx-tfrac1{2(k+1)}
=tfrac1{k+2}-tfrac1{2k+2}
=frac{k}{2(k+1)(k+2)}$$
so that the (Pearson) correlation coefficient is
$$
mathrm{Corr}(X,Y)
=frac{sigma_{XY}}{sigma_Xsigma_Y}
=frac{sqrt{3(2k+1)}}{k+2}.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046746%2fhomogeneous-distribution-variance-and-correlation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By some integration, we can find all these. Since this is a unit interval, the expected values are the "unweighted" integrals:
$$overline X=E[X]=int_0^1x,dx=frac12left[x^2right]_0^1=frac12$$
$$overline Y=E[Y]=int_0^1x^k,dx=frac1{k+1}left[x^{k+1}right]_0^1=frac1{k+1}$$
and the variances are
$$sigma_X^2=mathrm{Var}(X)=Eleft[(X-overline X)^2right]
=int_0^1left(x-tfrac12right)^2,dx=tfrac13left[left(x-tfrac12right)^3right]_0^1=tfrac1{12}$$
$$sigma_Y^2=mathrm{Var}(Y)=Eleft[(Y-overline Y)^2right]
=int_0^1left(x^k-tfrac1{k+1}right)^2,dx,$$
the latter of which can be found by
first multiplying out and then integrating,
or using $E[Y^2]-E[Y]^2$ then integrating,
and lastly simplifying to get
$$sigma_Y^2=frac{k^2}{(k+1)^2(2k+1)}.$$
Similarly, the covariance is
$$sigma_{XY}=mathrm{Cov}(X,Y)
=Eleft[(X-overline X)(Y-overline Y)right]
=E[XY]-E[X]E[Y]$$
$$=int_0^1x^{k+1},dx-tfrac1{2(k+1)}
=tfrac1{k+2}-tfrac1{2k+2}
=frac{k}{2(k+1)(k+2)}$$
so that the (Pearson) correlation coefficient is
$$
mathrm{Corr}(X,Y)
=frac{sigma_{XY}}{sigma_Xsigma_Y}
=frac{sqrt{3(2k+1)}}{k+2}.
$$
$endgroup$
add a comment |
$begingroup$
By some integration, we can find all these. Since this is a unit interval, the expected values are the "unweighted" integrals:
$$overline X=E[X]=int_0^1x,dx=frac12left[x^2right]_0^1=frac12$$
$$overline Y=E[Y]=int_0^1x^k,dx=frac1{k+1}left[x^{k+1}right]_0^1=frac1{k+1}$$
and the variances are
$$sigma_X^2=mathrm{Var}(X)=Eleft[(X-overline X)^2right]
=int_0^1left(x-tfrac12right)^2,dx=tfrac13left[left(x-tfrac12right)^3right]_0^1=tfrac1{12}$$
$$sigma_Y^2=mathrm{Var}(Y)=Eleft[(Y-overline Y)^2right]
=int_0^1left(x^k-tfrac1{k+1}right)^2,dx,$$
the latter of which can be found by
first multiplying out and then integrating,
or using $E[Y^2]-E[Y]^2$ then integrating,
and lastly simplifying to get
$$sigma_Y^2=frac{k^2}{(k+1)^2(2k+1)}.$$
Similarly, the covariance is
$$sigma_{XY}=mathrm{Cov}(X,Y)
=Eleft[(X-overline X)(Y-overline Y)right]
=E[XY]-E[X]E[Y]$$
$$=int_0^1x^{k+1},dx-tfrac1{2(k+1)}
=tfrac1{k+2}-tfrac1{2k+2}
=frac{k}{2(k+1)(k+2)}$$
so that the (Pearson) correlation coefficient is
$$
mathrm{Corr}(X,Y)
=frac{sigma_{XY}}{sigma_Xsigma_Y}
=frac{sqrt{3(2k+1)}}{k+2}.
$$
$endgroup$
add a comment |
$begingroup$
By some integration, we can find all these. Since this is a unit interval, the expected values are the "unweighted" integrals:
$$overline X=E[X]=int_0^1x,dx=frac12left[x^2right]_0^1=frac12$$
$$overline Y=E[Y]=int_0^1x^k,dx=frac1{k+1}left[x^{k+1}right]_0^1=frac1{k+1}$$
and the variances are
$$sigma_X^2=mathrm{Var}(X)=Eleft[(X-overline X)^2right]
=int_0^1left(x-tfrac12right)^2,dx=tfrac13left[left(x-tfrac12right)^3right]_0^1=tfrac1{12}$$
$$sigma_Y^2=mathrm{Var}(Y)=Eleft[(Y-overline Y)^2right]
=int_0^1left(x^k-tfrac1{k+1}right)^2,dx,$$
the latter of which can be found by
first multiplying out and then integrating,
or using $E[Y^2]-E[Y]^2$ then integrating,
and lastly simplifying to get
$$sigma_Y^2=frac{k^2}{(k+1)^2(2k+1)}.$$
Similarly, the covariance is
$$sigma_{XY}=mathrm{Cov}(X,Y)
=Eleft[(X-overline X)(Y-overline Y)right]
=E[XY]-E[X]E[Y]$$
$$=int_0^1x^{k+1},dx-tfrac1{2(k+1)}
=tfrac1{k+2}-tfrac1{2k+2}
=frac{k}{2(k+1)(k+2)}$$
so that the (Pearson) correlation coefficient is
$$
mathrm{Corr}(X,Y)
=frac{sigma_{XY}}{sigma_Xsigma_Y}
=frac{sqrt{3(2k+1)}}{k+2}.
$$
$endgroup$
By some integration, we can find all these. Since this is a unit interval, the expected values are the "unweighted" integrals:
$$overline X=E[X]=int_0^1x,dx=frac12left[x^2right]_0^1=frac12$$
$$overline Y=E[Y]=int_0^1x^k,dx=frac1{k+1}left[x^{k+1}right]_0^1=frac1{k+1}$$
and the variances are
$$sigma_X^2=mathrm{Var}(X)=Eleft[(X-overline X)^2right]
=int_0^1left(x-tfrac12right)^2,dx=tfrac13left[left(x-tfrac12right)^3right]_0^1=tfrac1{12}$$
$$sigma_Y^2=mathrm{Var}(Y)=Eleft[(Y-overline Y)^2right]
=int_0^1left(x^k-tfrac1{k+1}right)^2,dx,$$
the latter of which can be found by
first multiplying out and then integrating,
or using $E[Y^2]-E[Y]^2$ then integrating,
and lastly simplifying to get
$$sigma_Y^2=frac{k^2}{(k+1)^2(2k+1)}.$$
Similarly, the covariance is
$$sigma_{XY}=mathrm{Cov}(X,Y)
=Eleft[(X-overline X)(Y-overline Y)right]
=E[XY]-E[X]E[Y]$$
$$=int_0^1x^{k+1},dx-tfrac1{2(k+1)}
=tfrac1{k+2}-tfrac1{2k+2}
=frac{k}{2(k+1)(k+2)}$$
so that the (Pearson) correlation coefficient is
$$
mathrm{Corr}(X,Y)
=frac{sigma_{XY}}{sigma_Xsigma_Y}
=frac{sqrt{3(2k+1)}}{k+2}.
$$
edited Dec 19 '18 at 23:47
answered Dec 19 '18 at 23:28
bginsbgins
7,5101322
7,5101322
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046746%2fhomogeneous-distribution-variance-and-correlation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown