Functional equation with integral inequality
$begingroup$
Given the function $f:[0,infty)toBbb R$.
a) $f$ is an increasing function
b) $F(0)=0$ and $F(x+y)le F(x)+F(y)$ for all $x,y$ in the domain. ($F$ is the primitive of $f$)
Find $f$. Can somebody help me with some ideas, please?
calculus integration functions
$endgroup$
add a comment |
$begingroup$
Given the function $f:[0,infty)toBbb R$.
a) $f$ is an increasing function
b) $F(0)=0$ and $F(x+y)le F(x)+F(y)$ for all $x,y$ in the domain. ($F$ is the primitive of $f$)
Find $f$. Can somebody help me with some ideas, please?
calculus integration functions
$endgroup$
add a comment |
$begingroup$
Given the function $f:[0,infty)toBbb R$.
a) $f$ is an increasing function
b) $F(0)=0$ and $F(x+y)le F(x)+F(y)$ for all $x,y$ in the domain. ($F$ is the primitive of $f$)
Find $f$. Can somebody help me with some ideas, please?
calculus integration functions
$endgroup$
Given the function $f:[0,infty)toBbb R$.
a) $f$ is an increasing function
b) $F(0)=0$ and $F(x+y)le F(x)+F(y)$ for all $x,y$ in the domain. ($F$ is the primitive of $f$)
Find $f$. Can somebody help me with some ideas, please?
calculus integration functions
calculus integration functions
edited Dec 19 '18 at 20:30
jayant98
657318
657318
asked Dec 19 '18 at 19:16
GaboruGaboru
1677
1677
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
hint
Let $$F(x)=int_0^xf(t)dt$$
then for $xge yge 0$,
$$F(x+y)-F(y)=int_y^{x+y}f(t)dt$$
$$=int_0^xf(t+y)dt$$
thus
$$F(x+y)-F(y)-F(x)=int_0^x(f(t+y)-f(t))dtge 0$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046774%2ffunctional-equation-with-integral-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
hint
Let $$F(x)=int_0^xf(t)dt$$
then for $xge yge 0$,
$$F(x+y)-F(y)=int_y^{x+y}f(t)dt$$
$$=int_0^xf(t+y)dt$$
thus
$$F(x+y)-F(y)-F(x)=int_0^x(f(t+y)-f(t))dtge 0$$
$endgroup$
add a comment |
$begingroup$
hint
Let $$F(x)=int_0^xf(t)dt$$
then for $xge yge 0$,
$$F(x+y)-F(y)=int_y^{x+y}f(t)dt$$
$$=int_0^xf(t+y)dt$$
thus
$$F(x+y)-F(y)-F(x)=int_0^x(f(t+y)-f(t))dtge 0$$
$endgroup$
add a comment |
$begingroup$
hint
Let $$F(x)=int_0^xf(t)dt$$
then for $xge yge 0$,
$$F(x+y)-F(y)=int_y^{x+y}f(t)dt$$
$$=int_0^xf(t+y)dt$$
thus
$$F(x+y)-F(y)-F(x)=int_0^x(f(t+y)-f(t))dtge 0$$
$endgroup$
hint
Let $$F(x)=int_0^xf(t)dt$$
then for $xge yge 0$,
$$F(x+y)-F(y)=int_y^{x+y}f(t)dt$$
$$=int_0^xf(t+y)dt$$
thus
$$F(x+y)-F(y)-F(x)=int_0^x(f(t+y)-f(t))dtge 0$$
answered Dec 19 '18 at 20:20
hamam_Abdallahhamam_Abdallah
38k21634
38k21634
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046774%2ffunctional-equation-with-integral-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown