Tricky analysis proof involving the sum of integrals
$begingroup$
The question is as follows:
Let $P:a=t_{0}<t_{1}<...<t_{m}=b $ be a partition of $[a,b]$, $f_{j}$ be a Riemann integrable function on $[t_{j-1},t_{j}] forall j=1,...,m$, and let $f:[a,b]rightarrow mathbb{R}$ be a function with the property
$$frestriction_{(t_{j-1},t_{j})}=f_jrestriction_{(t_{j-1},t_{j})} forall j=1,...m.$$
Prove that
$$int_{a}^{b}f(x) dx=sum_{j=1}^{m}int_{t_{j-1}}^{t_{j}}f_{j}(x)dx.$$
I already know that $f$ is Riemann integrable iff $frestriction_{(t_{j-1},t_{j})}$ is Riemann integrable for each $j=1,...m.$ I have also proved this, so I believe the proof just needs to be shown for the case $m=1.$
Does anyone know how to tackle this?
Thanks in advance!
real-analysis integration riemann-integration
$endgroup$
add a comment |
$begingroup$
The question is as follows:
Let $P:a=t_{0}<t_{1}<...<t_{m}=b $ be a partition of $[a,b]$, $f_{j}$ be a Riemann integrable function on $[t_{j-1},t_{j}] forall j=1,...,m$, and let $f:[a,b]rightarrow mathbb{R}$ be a function with the property
$$frestriction_{(t_{j-1},t_{j})}=f_jrestriction_{(t_{j-1},t_{j})} forall j=1,...m.$$
Prove that
$$int_{a}^{b}f(x) dx=sum_{j=1}^{m}int_{t_{j-1}}^{t_{j}}f_{j}(x)dx.$$
I already know that $f$ is Riemann integrable iff $frestriction_{(t_{j-1},t_{j})}$ is Riemann integrable for each $j=1,...m.$ I have also proved this, so I believe the proof just needs to be shown for the case $m=1.$
Does anyone know how to tackle this?
Thanks in advance!
real-analysis integration riemann-integration
$endgroup$
$begingroup$
There is absolutely nothing to prove when $m=1$ because $f_1=f$ in that case.
$endgroup$
– Kavi Rama Murthy
Dec 9 '18 at 0:07
$begingroup$
@KaviRamaMurthy What is the correct approach then?
$endgroup$
– MathIsLife12
Dec 9 '18 at 1:35
add a comment |
$begingroup$
The question is as follows:
Let $P:a=t_{0}<t_{1}<...<t_{m}=b $ be a partition of $[a,b]$, $f_{j}$ be a Riemann integrable function on $[t_{j-1},t_{j}] forall j=1,...,m$, and let $f:[a,b]rightarrow mathbb{R}$ be a function with the property
$$frestriction_{(t_{j-1},t_{j})}=f_jrestriction_{(t_{j-1},t_{j})} forall j=1,...m.$$
Prove that
$$int_{a}^{b}f(x) dx=sum_{j=1}^{m}int_{t_{j-1}}^{t_{j}}f_{j}(x)dx.$$
I already know that $f$ is Riemann integrable iff $frestriction_{(t_{j-1},t_{j})}$ is Riemann integrable for each $j=1,...m.$ I have also proved this, so I believe the proof just needs to be shown for the case $m=1.$
Does anyone know how to tackle this?
Thanks in advance!
real-analysis integration riemann-integration
$endgroup$
The question is as follows:
Let $P:a=t_{0}<t_{1}<...<t_{m}=b $ be a partition of $[a,b]$, $f_{j}$ be a Riemann integrable function on $[t_{j-1},t_{j}] forall j=1,...,m$, and let $f:[a,b]rightarrow mathbb{R}$ be a function with the property
$$frestriction_{(t_{j-1},t_{j})}=f_jrestriction_{(t_{j-1},t_{j})} forall j=1,...m.$$
Prove that
$$int_{a}^{b}f(x) dx=sum_{j=1}^{m}int_{t_{j-1}}^{t_{j}}f_{j}(x)dx.$$
I already know that $f$ is Riemann integrable iff $frestriction_{(t_{j-1},t_{j})}$ is Riemann integrable for each $j=1,...m.$ I have also proved this, so I believe the proof just needs to be shown for the case $m=1.$
Does anyone know how to tackle this?
Thanks in advance!
real-analysis integration riemann-integration
real-analysis integration riemann-integration
asked Dec 8 '18 at 19:59
MathIsLife12MathIsLife12
572111
572111
$begingroup$
There is absolutely nothing to prove when $m=1$ because $f_1=f$ in that case.
$endgroup$
– Kavi Rama Murthy
Dec 9 '18 at 0:07
$begingroup$
@KaviRamaMurthy What is the correct approach then?
$endgroup$
– MathIsLife12
Dec 9 '18 at 1:35
add a comment |
$begingroup$
There is absolutely nothing to prove when $m=1$ because $f_1=f$ in that case.
$endgroup$
– Kavi Rama Murthy
Dec 9 '18 at 0:07
$begingroup$
@KaviRamaMurthy What is the correct approach then?
$endgroup$
– MathIsLife12
Dec 9 '18 at 1:35
$begingroup$
There is absolutely nothing to prove when $m=1$ because $f_1=f$ in that case.
$endgroup$
– Kavi Rama Murthy
Dec 9 '18 at 0:07
$begingroup$
There is absolutely nothing to prove when $m=1$ because $f_1=f$ in that case.
$endgroup$
– Kavi Rama Murthy
Dec 9 '18 at 0:07
$begingroup$
@KaviRamaMurthy What is the correct approach then?
$endgroup$
– MathIsLife12
Dec 9 '18 at 1:35
$begingroup$
@KaviRamaMurthy What is the correct approach then?
$endgroup$
– MathIsLife12
Dec 9 '18 at 1:35
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
This is just a generalization of integrability of $f$ on $[a,c]$ and $[c,b]$ implies integrability on $[a,b]$ and
$$int_a^b f(x) , dx = int_a^c f(x) , dx + int_c^b f(x) , dx $$
There exist partitions $P_j$ of $[t_{j-1},t_j]$ such that for $j=1,ldots,m$, upper and lower Darboux sums satisfy
$$U(P_j,f_j) - L(P_j,f_j) < frac{epsilon}{m}$$
With the partition $P = bigcup_{j=1}^n P_j$ we have
$$U(P,f) - L(P,f) = sum_{j=1}^n [ U(P_j,f_j) - L(P_j,f_j)] < epsilon$$
and $f$ is integrable by the Riemann criterion.
We must also have
$$L(P,f) leqslant int_a^b f(x) , dx leqslant U(P,f), \ L(P,f) = sum_{j=1}^n L(P_j,f_j) = sum_{j=1}^n int_{t_{j-1}}^{t_j} f_j(x) , dx leqslant sum_{j=1}^n U(P_j,f_j) = U(P,f)$$
Thus,
$$-epsilon < -[U(P,f) - L(P,f)] < int_a^b f(x) , dx - sum_{j=1}^n int_{t_{j-1}}^{t_j} f_j(x) , dx < U(P,f) - L(P,f) < epsilon,$$
which implies (since $epsilon$ can be chosen arbitrarily close to $0$)
$$int_a^b f(x) , dx = sum_{j=1}^n int_{t_{j-1}}^{t_j} f_j(x) , dx $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031564%2ftricky-analysis-proof-involving-the-sum-of-integrals%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This is just a generalization of integrability of $f$ on $[a,c]$ and $[c,b]$ implies integrability on $[a,b]$ and
$$int_a^b f(x) , dx = int_a^c f(x) , dx + int_c^b f(x) , dx $$
There exist partitions $P_j$ of $[t_{j-1},t_j]$ such that for $j=1,ldots,m$, upper and lower Darboux sums satisfy
$$U(P_j,f_j) - L(P_j,f_j) < frac{epsilon}{m}$$
With the partition $P = bigcup_{j=1}^n P_j$ we have
$$U(P,f) - L(P,f) = sum_{j=1}^n [ U(P_j,f_j) - L(P_j,f_j)] < epsilon$$
and $f$ is integrable by the Riemann criterion.
We must also have
$$L(P,f) leqslant int_a^b f(x) , dx leqslant U(P,f), \ L(P,f) = sum_{j=1}^n L(P_j,f_j) = sum_{j=1}^n int_{t_{j-1}}^{t_j} f_j(x) , dx leqslant sum_{j=1}^n U(P_j,f_j) = U(P,f)$$
Thus,
$$-epsilon < -[U(P,f) - L(P,f)] < int_a^b f(x) , dx - sum_{j=1}^n int_{t_{j-1}}^{t_j} f_j(x) , dx < U(P,f) - L(P,f) < epsilon,$$
which implies (since $epsilon$ can be chosen arbitrarily close to $0$)
$$int_a^b f(x) , dx = sum_{j=1}^n int_{t_{j-1}}^{t_j} f_j(x) , dx $$
$endgroup$
add a comment |
$begingroup$
This is just a generalization of integrability of $f$ on $[a,c]$ and $[c,b]$ implies integrability on $[a,b]$ and
$$int_a^b f(x) , dx = int_a^c f(x) , dx + int_c^b f(x) , dx $$
There exist partitions $P_j$ of $[t_{j-1},t_j]$ such that for $j=1,ldots,m$, upper and lower Darboux sums satisfy
$$U(P_j,f_j) - L(P_j,f_j) < frac{epsilon}{m}$$
With the partition $P = bigcup_{j=1}^n P_j$ we have
$$U(P,f) - L(P,f) = sum_{j=1}^n [ U(P_j,f_j) - L(P_j,f_j)] < epsilon$$
and $f$ is integrable by the Riemann criterion.
We must also have
$$L(P,f) leqslant int_a^b f(x) , dx leqslant U(P,f), \ L(P,f) = sum_{j=1}^n L(P_j,f_j) = sum_{j=1}^n int_{t_{j-1}}^{t_j} f_j(x) , dx leqslant sum_{j=1}^n U(P_j,f_j) = U(P,f)$$
Thus,
$$-epsilon < -[U(P,f) - L(P,f)] < int_a^b f(x) , dx - sum_{j=1}^n int_{t_{j-1}}^{t_j} f_j(x) , dx < U(P,f) - L(P,f) < epsilon,$$
which implies (since $epsilon$ can be chosen arbitrarily close to $0$)
$$int_a^b f(x) , dx = sum_{j=1}^n int_{t_{j-1}}^{t_j} f_j(x) , dx $$
$endgroup$
add a comment |
$begingroup$
This is just a generalization of integrability of $f$ on $[a,c]$ and $[c,b]$ implies integrability on $[a,b]$ and
$$int_a^b f(x) , dx = int_a^c f(x) , dx + int_c^b f(x) , dx $$
There exist partitions $P_j$ of $[t_{j-1},t_j]$ such that for $j=1,ldots,m$, upper and lower Darboux sums satisfy
$$U(P_j,f_j) - L(P_j,f_j) < frac{epsilon}{m}$$
With the partition $P = bigcup_{j=1}^n P_j$ we have
$$U(P,f) - L(P,f) = sum_{j=1}^n [ U(P_j,f_j) - L(P_j,f_j)] < epsilon$$
and $f$ is integrable by the Riemann criterion.
We must also have
$$L(P,f) leqslant int_a^b f(x) , dx leqslant U(P,f), \ L(P,f) = sum_{j=1}^n L(P_j,f_j) = sum_{j=1}^n int_{t_{j-1}}^{t_j} f_j(x) , dx leqslant sum_{j=1}^n U(P_j,f_j) = U(P,f)$$
Thus,
$$-epsilon < -[U(P,f) - L(P,f)] < int_a^b f(x) , dx - sum_{j=1}^n int_{t_{j-1}}^{t_j} f_j(x) , dx < U(P,f) - L(P,f) < epsilon,$$
which implies (since $epsilon$ can be chosen arbitrarily close to $0$)
$$int_a^b f(x) , dx = sum_{j=1}^n int_{t_{j-1}}^{t_j} f_j(x) , dx $$
$endgroup$
This is just a generalization of integrability of $f$ on $[a,c]$ and $[c,b]$ implies integrability on $[a,b]$ and
$$int_a^b f(x) , dx = int_a^c f(x) , dx + int_c^b f(x) , dx $$
There exist partitions $P_j$ of $[t_{j-1},t_j]$ such that for $j=1,ldots,m$, upper and lower Darboux sums satisfy
$$U(P_j,f_j) - L(P_j,f_j) < frac{epsilon}{m}$$
With the partition $P = bigcup_{j=1}^n P_j$ we have
$$U(P,f) - L(P,f) = sum_{j=1}^n [ U(P_j,f_j) - L(P_j,f_j)] < epsilon$$
and $f$ is integrable by the Riemann criterion.
We must also have
$$L(P,f) leqslant int_a^b f(x) , dx leqslant U(P,f), \ L(P,f) = sum_{j=1}^n L(P_j,f_j) = sum_{j=1}^n int_{t_{j-1}}^{t_j} f_j(x) , dx leqslant sum_{j=1}^n U(P_j,f_j) = U(P,f)$$
Thus,
$$-epsilon < -[U(P,f) - L(P,f)] < int_a^b f(x) , dx - sum_{j=1}^n int_{t_{j-1}}^{t_j} f_j(x) , dx < U(P,f) - L(P,f) < epsilon,$$
which implies (since $epsilon$ can be chosen arbitrarily close to $0$)
$$int_a^b f(x) , dx = sum_{j=1}^n int_{t_{j-1}}^{t_j} f_j(x) , dx $$
answered Dec 9 '18 at 6:38
RRLRRL
50.6k42573
50.6k42573
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031564%2ftricky-analysis-proof-involving-the-sum-of-integrals%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
There is absolutely nothing to prove when $m=1$ because $f_1=f$ in that case.
$endgroup$
– Kavi Rama Murthy
Dec 9 '18 at 0:07
$begingroup$
@KaviRamaMurthy What is the correct approach then?
$endgroup$
– MathIsLife12
Dec 9 '18 at 1:35