How do we compute $sum_{n=1}^{infty}frac{1}{K^{Sn}}$, for $K$ an integer and $S$ a complex number?












-2












$begingroup$


Consider the series:
$$sum_{n=1}^{infty}frac{1}{K^{Sn}}$$



where $K$ is some integer constant and $S$ is a complex number.



How we evaluate (compute sum of) this series where S is a complex number. Can we use integration? (I am unsure how we will do that as S is a complex number.)



Can someone please help with the formula? I am new to complex analysis thus struggling.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Write $s=K^S$. Then $sum_{n=1}^{infty}s^{-n}$.
    $endgroup$
    – Dietrich Burde
    Dec 8 '18 at 19:59
















-2












$begingroup$


Consider the series:
$$sum_{n=1}^{infty}frac{1}{K^{Sn}}$$



where $K$ is some integer constant and $S$ is a complex number.



How we evaluate (compute sum of) this series where S is a complex number. Can we use integration? (I am unsure how we will do that as S is a complex number.)



Can someone please help with the formula? I am new to complex analysis thus struggling.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Write $s=K^S$. Then $sum_{n=1}^{infty}s^{-n}$.
    $endgroup$
    – Dietrich Burde
    Dec 8 '18 at 19:59














-2












-2








-2





$begingroup$


Consider the series:
$$sum_{n=1}^{infty}frac{1}{K^{Sn}}$$



where $K$ is some integer constant and $S$ is a complex number.



How we evaluate (compute sum of) this series where S is a complex number. Can we use integration? (I am unsure how we will do that as S is a complex number.)



Can someone please help with the formula? I am new to complex analysis thus struggling.










share|cite|improve this question











$endgroup$




Consider the series:
$$sum_{n=1}^{infty}frac{1}{K^{Sn}}$$



where $K$ is some integer constant and $S$ is a complex number.



How we evaluate (compute sum of) this series where S is a complex number. Can we use integration? (I am unsure how we will do that as S is a complex number.)



Can someone please help with the formula? I am new to complex analysis thus struggling.







sequences-and-series complex-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 8 '18 at 20:02









Blue

48k870153




48k870153










asked Dec 8 '18 at 19:55









TheoryQuest1TheoryQuest1

1266




1266








  • 1




    $begingroup$
    Write $s=K^S$. Then $sum_{n=1}^{infty}s^{-n}$.
    $endgroup$
    – Dietrich Burde
    Dec 8 '18 at 19:59














  • 1




    $begingroup$
    Write $s=K^S$. Then $sum_{n=1}^{infty}s^{-n}$.
    $endgroup$
    – Dietrich Burde
    Dec 8 '18 at 19:59








1




1




$begingroup$
Write $s=K^S$. Then $sum_{n=1}^{infty}s^{-n}$.
$endgroup$
– Dietrich Burde
Dec 8 '18 at 19:59




$begingroup$
Write $s=K^S$. Then $sum_{n=1}^{infty}s^{-n}$.
$endgroup$
– Dietrich Burde
Dec 8 '18 at 19:59










1 Answer
1






active

oldest

votes


















3












$begingroup$

Looks like a geometric progression with quotient $1/K^S$.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Indeed it is. So, can we simply evaluate the sum as: $1/(1-r)$ where $r=1/K^S$ ?
    $endgroup$
    – TheoryQuest1
    Dec 8 '18 at 20:10










  • $begingroup$
    That is correct.
    $endgroup$
    – A. Pongrácz
    Dec 8 '18 at 20:12










  • $begingroup$
    Thanks a lot...
    $endgroup$
    – TheoryQuest1
    Dec 8 '18 at 20:12











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031561%2fhow-do-we-compute-sum-n-1-infty-frac1ksn-for-k-an-integer-and%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

Looks like a geometric progression with quotient $1/K^S$.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Indeed it is. So, can we simply evaluate the sum as: $1/(1-r)$ where $r=1/K^S$ ?
    $endgroup$
    – TheoryQuest1
    Dec 8 '18 at 20:10










  • $begingroup$
    That is correct.
    $endgroup$
    – A. Pongrácz
    Dec 8 '18 at 20:12










  • $begingroup$
    Thanks a lot...
    $endgroup$
    – TheoryQuest1
    Dec 8 '18 at 20:12
















3












$begingroup$

Looks like a geometric progression with quotient $1/K^S$.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Indeed it is. So, can we simply evaluate the sum as: $1/(1-r)$ where $r=1/K^S$ ?
    $endgroup$
    – TheoryQuest1
    Dec 8 '18 at 20:10










  • $begingroup$
    That is correct.
    $endgroup$
    – A. Pongrácz
    Dec 8 '18 at 20:12










  • $begingroup$
    Thanks a lot...
    $endgroup$
    – TheoryQuest1
    Dec 8 '18 at 20:12














3












3








3





$begingroup$

Looks like a geometric progression with quotient $1/K^S$.






share|cite|improve this answer









$endgroup$



Looks like a geometric progression with quotient $1/K^S$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 8 '18 at 19:59









A. PongráczA. Pongrácz

5,9631929




5,9631929








  • 1




    $begingroup$
    Indeed it is. So, can we simply evaluate the sum as: $1/(1-r)$ where $r=1/K^S$ ?
    $endgroup$
    – TheoryQuest1
    Dec 8 '18 at 20:10










  • $begingroup$
    That is correct.
    $endgroup$
    – A. Pongrácz
    Dec 8 '18 at 20:12










  • $begingroup$
    Thanks a lot...
    $endgroup$
    – TheoryQuest1
    Dec 8 '18 at 20:12














  • 1




    $begingroup$
    Indeed it is. So, can we simply evaluate the sum as: $1/(1-r)$ where $r=1/K^S$ ?
    $endgroup$
    – TheoryQuest1
    Dec 8 '18 at 20:10










  • $begingroup$
    That is correct.
    $endgroup$
    – A. Pongrácz
    Dec 8 '18 at 20:12










  • $begingroup$
    Thanks a lot...
    $endgroup$
    – TheoryQuest1
    Dec 8 '18 at 20:12








1




1




$begingroup$
Indeed it is. So, can we simply evaluate the sum as: $1/(1-r)$ where $r=1/K^S$ ?
$endgroup$
– TheoryQuest1
Dec 8 '18 at 20:10




$begingroup$
Indeed it is. So, can we simply evaluate the sum as: $1/(1-r)$ where $r=1/K^S$ ?
$endgroup$
– TheoryQuest1
Dec 8 '18 at 20:10












$begingroup$
That is correct.
$endgroup$
– A. Pongrácz
Dec 8 '18 at 20:12




$begingroup$
That is correct.
$endgroup$
– A. Pongrácz
Dec 8 '18 at 20:12












$begingroup$
Thanks a lot...
$endgroup$
– TheoryQuest1
Dec 8 '18 at 20:12




$begingroup$
Thanks a lot...
$endgroup$
– TheoryQuest1
Dec 8 '18 at 20:12


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031561%2fhow-do-we-compute-sum-n-1-infty-frac1ksn-for-k-an-integer-and%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Aardman Animations

Are they similar matrix

“minimization” problem in Euclidean space related to orthonormal basis