Hash function that describe solid tetromino in the table
$begingroup$
I'm trying to find a hash function that describes solid tetromino in a matrix 4x4 consisting of '0' and '1'. Here is what I mean:
1) 1111 0000 0000 0000 - solid tetromino, all this ones have the same hash
0000 1111 0000 0000
0000 0000 1111 0000
0000 0000 0000 1111
2) 0111 0100 0010 - NOT solid tetromino, any other different hashes
1000 1000 0010 (this examples shows that simple byte code
0000 1000 0100 on rowscolumnstheir combination will not
0000 0000 0100 work correctly)
3) 0100 0010 0000 - some more examples for the same hash and what
1110 0111 0000 I mean by "solid" tetromino
0000 0000 0100
0000 0000 1110
I am stuck on an idea with the representation of a matrix as a binary number of length 16 made up of a series of rows or columns. It does not work correctly with series 1 and 2 above.
You can find picture of all possible tetrominos on wiki-page.
combinatorics matrices hash-function
$endgroup$
add a comment |
$begingroup$
I'm trying to find a hash function that describes solid tetromino in a matrix 4x4 consisting of '0' and '1'. Here is what I mean:
1) 1111 0000 0000 0000 - solid tetromino, all this ones have the same hash
0000 1111 0000 0000
0000 0000 1111 0000
0000 0000 0000 1111
2) 0111 0100 0010 - NOT solid tetromino, any other different hashes
1000 1000 0010 (this examples shows that simple byte code
0000 1000 0100 on rowscolumnstheir combination will not
0000 0000 0100 work correctly)
3) 0100 0010 0000 - some more examples for the same hash and what
1110 0111 0000 I mean by "solid" tetromino
0000 0000 0100
0000 0000 1110
I am stuck on an idea with the representation of a matrix as a binary number of length 16 made up of a series of rows or columns. It does not work correctly with series 1 and 2 above.
You can find picture of all possible tetrominos on wiki-page.
combinatorics matrices hash-function
$endgroup$
add a comment |
$begingroup$
I'm trying to find a hash function that describes solid tetromino in a matrix 4x4 consisting of '0' and '1'. Here is what I mean:
1) 1111 0000 0000 0000 - solid tetromino, all this ones have the same hash
0000 1111 0000 0000
0000 0000 1111 0000
0000 0000 0000 1111
2) 0111 0100 0010 - NOT solid tetromino, any other different hashes
1000 1000 0010 (this examples shows that simple byte code
0000 1000 0100 on rowscolumnstheir combination will not
0000 0000 0100 work correctly)
3) 0100 0010 0000 - some more examples for the same hash and what
1110 0111 0000 I mean by "solid" tetromino
0000 0000 0100
0000 0000 1110
I am stuck on an idea with the representation of a matrix as a binary number of length 16 made up of a series of rows or columns. It does not work correctly with series 1 and 2 above.
You can find picture of all possible tetrominos on wiki-page.
combinatorics matrices hash-function
$endgroup$
I'm trying to find a hash function that describes solid tetromino in a matrix 4x4 consisting of '0' and '1'. Here is what I mean:
1) 1111 0000 0000 0000 - solid tetromino, all this ones have the same hash
0000 1111 0000 0000
0000 0000 1111 0000
0000 0000 0000 1111
2) 0111 0100 0010 - NOT solid tetromino, any other different hashes
1000 1000 0010 (this examples shows that simple byte code
0000 1000 0100 on rowscolumnstheir combination will not
0000 0000 0100 work correctly)
3) 0100 0010 0000 - some more examples for the same hash and what
1110 0111 0000 I mean by "solid" tetromino
0000 0000 0100
0000 0000 1110
I am stuck on an idea with the representation of a matrix as a binary number of length 16 made up of a series of rows or columns. It does not work correctly with series 1 and 2 above.
You can find picture of all possible tetrominos on wiki-page.
combinatorics matrices hash-function
combinatorics matrices hash-function
asked Dec 8 '18 at 19:14
Maxim FrolovMaxim Frolov
11
11
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Ok, I found the perfect function for myself. This clusters all figures of the same type into groups with the same hash.
This takes as input a binary number obtained by condensing the rows of the matrix horizontally.
$$f(x) = sum_{i=0}^{15} (x[i] == 1) ? (1 << ((i + i div 4) - (fo + fo div 4))) : 0 $$
Where:
i - index of digit in binary number
fo - i of first entry 1 left to right
« - binary shift to the left
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031501%2fhash-function-that-describe-solid-tetromino-in-the-table%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Ok, I found the perfect function for myself. This clusters all figures of the same type into groups with the same hash.
This takes as input a binary number obtained by condensing the rows of the matrix horizontally.
$$f(x) = sum_{i=0}^{15} (x[i] == 1) ? (1 << ((i + i div 4) - (fo + fo div 4))) : 0 $$
Where:
i - index of digit in binary number
fo - i of first entry 1 left to right
« - binary shift to the left
$endgroup$
add a comment |
$begingroup$
Ok, I found the perfect function for myself. This clusters all figures of the same type into groups with the same hash.
This takes as input a binary number obtained by condensing the rows of the matrix horizontally.
$$f(x) = sum_{i=0}^{15} (x[i] == 1) ? (1 << ((i + i div 4) - (fo + fo div 4))) : 0 $$
Where:
i - index of digit in binary number
fo - i of first entry 1 left to right
« - binary shift to the left
$endgroup$
add a comment |
$begingroup$
Ok, I found the perfect function for myself. This clusters all figures of the same type into groups with the same hash.
This takes as input a binary number obtained by condensing the rows of the matrix horizontally.
$$f(x) = sum_{i=0}^{15} (x[i] == 1) ? (1 << ((i + i div 4) - (fo + fo div 4))) : 0 $$
Where:
i - index of digit in binary number
fo - i of first entry 1 left to right
« - binary shift to the left
$endgroup$
Ok, I found the perfect function for myself. This clusters all figures of the same type into groups with the same hash.
This takes as input a binary number obtained by condensing the rows of the matrix horizontally.
$$f(x) = sum_{i=0}^{15} (x[i] == 1) ? (1 << ((i + i div 4) - (fo + fo div 4))) : 0 $$
Where:
i - index of digit in binary number
fo - i of first entry 1 left to right
« - binary shift to the left
answered Dec 10 '18 at 14:52
Maxim FrolovMaxim Frolov
11
11
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031501%2fhash-function-that-describe-solid-tetromino-in-the-table%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown