how to do this compute the matrix of $$ with respect to the basis $B={1,x,x^2}$












0














Let $V = mathbb{R}[x]_{le2}$ be the $mathbb{R}-$vector space of polynomials
$f(x) = a_0 + a_1x + a_2x^2$ with real coefficients $a_i$ in $mathbb{R}$, of degree $le2$.



Define,
$$langle f(x),g(x)rangle =int_{-2}^{2}f(x)g(x)dx$$



Compute the matrix of $langle .,.rangle$ with respect to the basis $B = {1, x, x^2}$










share|cite|improve this question
























  • Welcome to Math.SE! For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
    – platty
    Nov 30 '18 at 2:29
















0














Let $V = mathbb{R}[x]_{le2}$ be the $mathbb{R}-$vector space of polynomials
$f(x) = a_0 + a_1x + a_2x^2$ with real coefficients $a_i$ in $mathbb{R}$, of degree $le2$.



Define,
$$langle f(x),g(x)rangle =int_{-2}^{2}f(x)g(x)dx$$



Compute the matrix of $langle .,.rangle$ with respect to the basis $B = {1, x, x^2}$










share|cite|improve this question
























  • Welcome to Math.SE! For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
    – platty
    Nov 30 '18 at 2:29














0












0








0







Let $V = mathbb{R}[x]_{le2}$ be the $mathbb{R}-$vector space of polynomials
$f(x) = a_0 + a_1x + a_2x^2$ with real coefficients $a_i$ in $mathbb{R}$, of degree $le2$.



Define,
$$langle f(x),g(x)rangle =int_{-2}^{2}f(x)g(x)dx$$



Compute the matrix of $langle .,.rangle$ with respect to the basis $B = {1, x, x^2}$










share|cite|improve this question















Let $V = mathbb{R}[x]_{le2}$ be the $mathbb{R}-$vector space of polynomials
$f(x) = a_0 + a_1x + a_2x^2$ with real coefficients $a_i$ in $mathbb{R}$, of degree $le2$.



Define,
$$langle f(x),g(x)rangle =int_{-2}^{2}f(x)g(x)dx$$



Compute the matrix of $langle .,.rangle$ with respect to the basis $B = {1, x, x^2}$







linear-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 30 '18 at 4:44









Sujit Bhattacharyya

945318




945318










asked Nov 30 '18 at 2:24









vickyvicky

1




1












  • Welcome to Math.SE! For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
    – platty
    Nov 30 '18 at 2:29


















  • Welcome to Math.SE! For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
    – platty
    Nov 30 '18 at 2:29
















Welcome to Math.SE! For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
– platty
Nov 30 '18 at 2:29




Welcome to Math.SE! For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
– platty
Nov 30 '18 at 2:29










1 Answer
1






active

oldest

votes


















0














Define the variables $$mathbf a = (a_0,a_1,a_2)^T, mathbf b = (b_0,b_1,b_2)^T, text{ and } P = begin{pmatrix}p_{00} & p_{01} & p_{02} \ p_{10} & p_{11} & p_{12} \ p_{20} & p_{21} & p_{22} end{pmatrix}$$ Also, let $$f(x) = a_0+a_1x+a_2x^2 text{ and } g(x) = b_0+b_1x+b_2x^2$$



Then, $P$ is a matrix for $langlecdot , cdotrangle$ iff



$$ mathbf a^T P mathbf b = langle f(x), g(x)rangle = int_{-2}^2 f(x)g(x)text dx$$



Evaluating the left-hand side gives



$$ mathbf a^T P mathbf b = sumlimits_{i=0}^2sumlimits_{j=0}^2 p_{ij}a_ib_j$$



so the $ij$-th entry of $P$ is the coefficient of $a_ib_j$. Evaluating the right-hand side gives



$$ int_{-2}^2 f(x)g(x)text dx = int_{-2}^2 (a_0+a_1x+a_2x^2)(b_0+b_1x+b_2x^2)text dx \ = 4a_0b_0 + frac{16}{3}a_0b_2 + frac{16}{3}a_1b_1 + frac{16}{3}a_2b_0 + frac{64}{5}a_2b_2$$



Putting this information together, we can deduce the entries of the matrix $P$:



$$ P = begin{pmatrix}4 & 0 & frac{16}{3} \ 0 & frac{16}{3} & 0 \ frac{16}{3} & 0 & frac{64}{5} end{pmatrix} $$






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019539%2fhow-to-do-this-compute-the-matrix-of-with-respect-to-the-basis-b-1-x-x%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    Define the variables $$mathbf a = (a_0,a_1,a_2)^T, mathbf b = (b_0,b_1,b_2)^T, text{ and } P = begin{pmatrix}p_{00} & p_{01} & p_{02} \ p_{10} & p_{11} & p_{12} \ p_{20} & p_{21} & p_{22} end{pmatrix}$$ Also, let $$f(x) = a_0+a_1x+a_2x^2 text{ and } g(x) = b_0+b_1x+b_2x^2$$



    Then, $P$ is a matrix for $langlecdot , cdotrangle$ iff



    $$ mathbf a^T P mathbf b = langle f(x), g(x)rangle = int_{-2}^2 f(x)g(x)text dx$$



    Evaluating the left-hand side gives



    $$ mathbf a^T P mathbf b = sumlimits_{i=0}^2sumlimits_{j=0}^2 p_{ij}a_ib_j$$



    so the $ij$-th entry of $P$ is the coefficient of $a_ib_j$. Evaluating the right-hand side gives



    $$ int_{-2}^2 f(x)g(x)text dx = int_{-2}^2 (a_0+a_1x+a_2x^2)(b_0+b_1x+b_2x^2)text dx \ = 4a_0b_0 + frac{16}{3}a_0b_2 + frac{16}{3}a_1b_1 + frac{16}{3}a_2b_0 + frac{64}{5}a_2b_2$$



    Putting this information together, we can deduce the entries of the matrix $P$:



    $$ P = begin{pmatrix}4 & 0 & frac{16}{3} \ 0 & frac{16}{3} & 0 \ frac{16}{3} & 0 & frac{64}{5} end{pmatrix} $$






    share|cite|improve this answer


























      0














      Define the variables $$mathbf a = (a_0,a_1,a_2)^T, mathbf b = (b_0,b_1,b_2)^T, text{ and } P = begin{pmatrix}p_{00} & p_{01} & p_{02} \ p_{10} & p_{11} & p_{12} \ p_{20} & p_{21} & p_{22} end{pmatrix}$$ Also, let $$f(x) = a_0+a_1x+a_2x^2 text{ and } g(x) = b_0+b_1x+b_2x^2$$



      Then, $P$ is a matrix for $langlecdot , cdotrangle$ iff



      $$ mathbf a^T P mathbf b = langle f(x), g(x)rangle = int_{-2}^2 f(x)g(x)text dx$$



      Evaluating the left-hand side gives



      $$ mathbf a^T P mathbf b = sumlimits_{i=0}^2sumlimits_{j=0}^2 p_{ij}a_ib_j$$



      so the $ij$-th entry of $P$ is the coefficient of $a_ib_j$. Evaluating the right-hand side gives



      $$ int_{-2}^2 f(x)g(x)text dx = int_{-2}^2 (a_0+a_1x+a_2x^2)(b_0+b_1x+b_2x^2)text dx \ = 4a_0b_0 + frac{16}{3}a_0b_2 + frac{16}{3}a_1b_1 + frac{16}{3}a_2b_0 + frac{64}{5}a_2b_2$$



      Putting this information together, we can deduce the entries of the matrix $P$:



      $$ P = begin{pmatrix}4 & 0 & frac{16}{3} \ 0 & frac{16}{3} & 0 \ frac{16}{3} & 0 & frac{64}{5} end{pmatrix} $$






      share|cite|improve this answer
























        0












        0








        0






        Define the variables $$mathbf a = (a_0,a_1,a_2)^T, mathbf b = (b_0,b_1,b_2)^T, text{ and } P = begin{pmatrix}p_{00} & p_{01} & p_{02} \ p_{10} & p_{11} & p_{12} \ p_{20} & p_{21} & p_{22} end{pmatrix}$$ Also, let $$f(x) = a_0+a_1x+a_2x^2 text{ and } g(x) = b_0+b_1x+b_2x^2$$



        Then, $P$ is a matrix for $langlecdot , cdotrangle$ iff



        $$ mathbf a^T P mathbf b = langle f(x), g(x)rangle = int_{-2}^2 f(x)g(x)text dx$$



        Evaluating the left-hand side gives



        $$ mathbf a^T P mathbf b = sumlimits_{i=0}^2sumlimits_{j=0}^2 p_{ij}a_ib_j$$



        so the $ij$-th entry of $P$ is the coefficient of $a_ib_j$. Evaluating the right-hand side gives



        $$ int_{-2}^2 f(x)g(x)text dx = int_{-2}^2 (a_0+a_1x+a_2x^2)(b_0+b_1x+b_2x^2)text dx \ = 4a_0b_0 + frac{16}{3}a_0b_2 + frac{16}{3}a_1b_1 + frac{16}{3}a_2b_0 + frac{64}{5}a_2b_2$$



        Putting this information together, we can deduce the entries of the matrix $P$:



        $$ P = begin{pmatrix}4 & 0 & frac{16}{3} \ 0 & frac{16}{3} & 0 \ frac{16}{3} & 0 & frac{64}{5} end{pmatrix} $$






        share|cite|improve this answer












        Define the variables $$mathbf a = (a_0,a_1,a_2)^T, mathbf b = (b_0,b_1,b_2)^T, text{ and } P = begin{pmatrix}p_{00} & p_{01} & p_{02} \ p_{10} & p_{11} & p_{12} \ p_{20} & p_{21} & p_{22} end{pmatrix}$$ Also, let $$f(x) = a_0+a_1x+a_2x^2 text{ and } g(x) = b_0+b_1x+b_2x^2$$



        Then, $P$ is a matrix for $langlecdot , cdotrangle$ iff



        $$ mathbf a^T P mathbf b = langle f(x), g(x)rangle = int_{-2}^2 f(x)g(x)text dx$$



        Evaluating the left-hand side gives



        $$ mathbf a^T P mathbf b = sumlimits_{i=0}^2sumlimits_{j=0}^2 p_{ij}a_ib_j$$



        so the $ij$-th entry of $P$ is the coefficient of $a_ib_j$. Evaluating the right-hand side gives



        $$ int_{-2}^2 f(x)g(x)text dx = int_{-2}^2 (a_0+a_1x+a_2x^2)(b_0+b_1x+b_2x^2)text dx \ = 4a_0b_0 + frac{16}{3}a_0b_2 + frac{16}{3}a_1b_1 + frac{16}{3}a_2b_0 + frac{64}{5}a_2b_2$$



        Putting this information together, we can deduce the entries of the matrix $P$:



        $$ P = begin{pmatrix}4 & 0 & frac{16}{3} \ 0 & frac{16}{3} & 0 \ frac{16}{3} & 0 & frac{64}{5} end{pmatrix} $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 30 '18 at 5:46









        AlexanderJ93AlexanderJ93

        6,093823




        6,093823






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019539%2fhow-to-do-this-compute-the-matrix-of-with-respect-to-the-basis-b-1-x-x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Probability when a professor distributes a quiz and homework assignment to a class of n students.

            Aardman Animations

            Are they similar matrix