On $xy$ vs $ab$ where $2xy+x+y+1 = 2ab+a+b$
Let us suppose that $2xy+x+y = n$, where $x,y,n$ are positive integers and $x≥2$ and $y≥2$.
Let us choose x and y, so that $n+1 = 2ab+a+b$ , where $a, b$ are also positive integer numbers.
I was wondering what we can say about the relation between $x*y$ and $a*b$.
As $n$ and $n+1$ are very close, and as $xy > x+y$, there is likely to be a maximal difference between $xy$ and $ab$.
Am I right to suppose that to fulfil the equations, $xy = ab$ or $xy + 1 = ab$ ? So this maximum difference is 1 ?
elementary-number-theory
add a comment |
Let us suppose that $2xy+x+y = n$, where $x,y,n$ are positive integers and $x≥2$ and $y≥2$.
Let us choose x and y, so that $n+1 = 2ab+a+b$ , where $a, b$ are also positive integer numbers.
I was wondering what we can say about the relation between $x*y$ and $a*b$.
As $n$ and $n+1$ are very close, and as $xy > x+y$, there is likely to be a maximal difference between $xy$ and $ab$.
Am I right to suppose that to fulfil the equations, $xy = ab$ or $xy + 1 = ab$ ? So this maximum difference is 1 ?
elementary-number-theory
add a comment |
Let us suppose that $2xy+x+y = n$, where $x,y,n$ are positive integers and $x≥2$ and $y≥2$.
Let us choose x and y, so that $n+1 = 2ab+a+b$ , where $a, b$ are also positive integer numbers.
I was wondering what we can say about the relation between $x*y$ and $a*b$.
As $n$ and $n+1$ are very close, and as $xy > x+y$, there is likely to be a maximal difference between $xy$ and $ab$.
Am I right to suppose that to fulfil the equations, $xy = ab$ or $xy + 1 = ab$ ? So this maximum difference is 1 ?
elementary-number-theory
Let us suppose that $2xy+x+y = n$, where $x,y,n$ are positive integers and $x≥2$ and $y≥2$.
Let us choose x and y, so that $n+1 = 2ab+a+b$ , where $a, b$ are also positive integer numbers.
I was wondering what we can say about the relation between $x*y$ and $a*b$.
As $n$ and $n+1$ are very close, and as $xy > x+y$, there is likely to be a maximal difference between $xy$ and $ab$.
Am I right to suppose that to fulfil the equations, $xy = ab$ or $xy + 1 = ab$ ? So this maximum difference is 1 ?
elementary-number-theory
elementary-number-theory
asked Nov 25 at 20:07
Tilsight
135
135
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
apparently not
a: 4 b: 1 x: 2 y: 2 |a*b - x*y| : 0
a: 5 b: 3 x: 7 y: 2 |a*b - x*y| : 1
a: 5 b: 5 x: 8 y: 3 |a*b - x*y| : 1
a: 6 b: 2 x: 4 y: 3 |a*b - x*y| : 0
a: 6 b: 4 x: 11 y: 2 |a*b - x*y| : 2
a: 7 b: 4 x: 9 y: 3 |a*b - x*y| : 1
a: 8 b: 1 x: 3 y: 3 |a*b - x*y| : 1
a: 8 b: 3 x: 6 y: 4 |a*b - x*y| : 0
a: 8 b: 5 x: 18 y: 2 |a*b - x*y| : 4
a: 8 b: 7 x: 11 y: 5 |a*b - x*y| : 1
a: 8 b: 8 x: 20 y: 3 |a*b - x*y| : 4
a: 9 b: 1 x: 5 y: 2 |a*b - x*y| : 1
a: 9 b: 4 x: 6 y: 6 |a*b - x*y| : 0
a: 9 b: 5 x: 11 y: 4 |a*b - x*y| : 1
a: 9 b: 6 x: 24 y: 2 |a*b - x*y| : 6
a: 9 b: 6 x: 17 y: 3 |a*b - x*y| : 3
a: 10 b: 3 x: 14 y: 2 |a*b - x*y| : 2
a: 10 b: 4 x: 8 y: 5 |a*b - x*y| : 0
a: 10 b: 8 x: 35 y: 2 |a*b - x*y| : 10
Thank you, Will.
– Tilsight
Nov 25 at 20:41
Just a question, you gave a very quick answer with a lot of examples. How did you do it so effectively? U wrote a script in C?
– Tilsight
Nov 25 at 20:43
add a comment |
Let for instance $a=1$ so we get that $3 b =n$ , and assume that $x =y$ so we get that $2 x^2 +2 x =n = 3b $ which leads to $x = frac{-2+sqrt{4+24b}}{4}$,
so for instance : for $b=28$ gives that $x = y = 6$ and $a=1$, so $| x y -a b| = 8$ , and you can get the maximum difference as large as you want.
add a comment |
Not bounded at all.
With $a equiv 3,4 pmod 5,$ we can take $b = a-3,$ then $y=2$ and
$$ x = frac{2(a-3)(a+1)}{5} $$
With $a equiv 0,1 pmod 5,$ we can take $b = a-2,$ then $y=2$ and
$$ x = frac{2a^2 -2a-5}{5} $$
a: 275 b: 273 x: 30139 y: 2 |a*b - x*y| : 14797
a: 276 b: 274 x: 30359 y: 2 |a*b - x*y| : 14906
a: 278 b: 275 x: 30690 y: 2 |a*b - x*y| : 15070
a: 279 b: 276 x: 30912 y: 2 |a*b - x*y| : 15180
a: 280 b: 278 x: 31247 y: 2 |a*b - x*y| : 15346
a: 281 b: 279 x: 31471 y: 2 |a*b - x*y| : 15457
a: 283 b: 280 x: 31808 y: 2 |a*b - x*y| : 15624
a: 284 b: 281 x: 32034 y: 2 |a*b - x*y| : 15736
a: 285 b: 283 x: 32375 y: 2 |a*b - x*y| : 15905
a: 286 b: 284 x: 32603 y: 2 |a*b - x*y| : 16018
a: 288 b: 285 x: 32946 y: 2 |a*b - x*y| : 16188
a: 289 b: 286 x: 33176 y: 2 |a*b - x*y| : 16302
a: 290 b: 288 x: 33523 y: 2 |a*b - x*y| : 16474
a: 291 b: 289 x: 33755 y: 2 |a*b - x*y| : 16589
a: 293 b: 290 x: 34104 y: 2 |a*b - x*y| : 16762
a: 294 b: 291 x: 34338 y: 2 |a*b - x*y| : 16878
a: 295 b: 293 x: 34691 y: 2 |a*b - x*y| : 17053
a: 296 b: 294 x: 34927 y: 2 |a*b - x*y| : 17170
a: 298 b: 295 x: 35282 y: 2 |a*b - x*y| : 17346
a: 299 b: 296 x: 35520 y: 2 |a*b - x*y| : 17464
a: 300 b: 298 x: 35879 y: 2 |a*b - x*y| : 17642
Thanks guys. Respect 😀
– Tilsight
Nov 25 at 20:57
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013321%2fon-xy-vs-ab-where-2xyxy1-2abab%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
apparently not
a: 4 b: 1 x: 2 y: 2 |a*b - x*y| : 0
a: 5 b: 3 x: 7 y: 2 |a*b - x*y| : 1
a: 5 b: 5 x: 8 y: 3 |a*b - x*y| : 1
a: 6 b: 2 x: 4 y: 3 |a*b - x*y| : 0
a: 6 b: 4 x: 11 y: 2 |a*b - x*y| : 2
a: 7 b: 4 x: 9 y: 3 |a*b - x*y| : 1
a: 8 b: 1 x: 3 y: 3 |a*b - x*y| : 1
a: 8 b: 3 x: 6 y: 4 |a*b - x*y| : 0
a: 8 b: 5 x: 18 y: 2 |a*b - x*y| : 4
a: 8 b: 7 x: 11 y: 5 |a*b - x*y| : 1
a: 8 b: 8 x: 20 y: 3 |a*b - x*y| : 4
a: 9 b: 1 x: 5 y: 2 |a*b - x*y| : 1
a: 9 b: 4 x: 6 y: 6 |a*b - x*y| : 0
a: 9 b: 5 x: 11 y: 4 |a*b - x*y| : 1
a: 9 b: 6 x: 24 y: 2 |a*b - x*y| : 6
a: 9 b: 6 x: 17 y: 3 |a*b - x*y| : 3
a: 10 b: 3 x: 14 y: 2 |a*b - x*y| : 2
a: 10 b: 4 x: 8 y: 5 |a*b - x*y| : 0
a: 10 b: 8 x: 35 y: 2 |a*b - x*y| : 10
Thank you, Will.
– Tilsight
Nov 25 at 20:41
Just a question, you gave a very quick answer with a lot of examples. How did you do it so effectively? U wrote a script in C?
– Tilsight
Nov 25 at 20:43
add a comment |
apparently not
a: 4 b: 1 x: 2 y: 2 |a*b - x*y| : 0
a: 5 b: 3 x: 7 y: 2 |a*b - x*y| : 1
a: 5 b: 5 x: 8 y: 3 |a*b - x*y| : 1
a: 6 b: 2 x: 4 y: 3 |a*b - x*y| : 0
a: 6 b: 4 x: 11 y: 2 |a*b - x*y| : 2
a: 7 b: 4 x: 9 y: 3 |a*b - x*y| : 1
a: 8 b: 1 x: 3 y: 3 |a*b - x*y| : 1
a: 8 b: 3 x: 6 y: 4 |a*b - x*y| : 0
a: 8 b: 5 x: 18 y: 2 |a*b - x*y| : 4
a: 8 b: 7 x: 11 y: 5 |a*b - x*y| : 1
a: 8 b: 8 x: 20 y: 3 |a*b - x*y| : 4
a: 9 b: 1 x: 5 y: 2 |a*b - x*y| : 1
a: 9 b: 4 x: 6 y: 6 |a*b - x*y| : 0
a: 9 b: 5 x: 11 y: 4 |a*b - x*y| : 1
a: 9 b: 6 x: 24 y: 2 |a*b - x*y| : 6
a: 9 b: 6 x: 17 y: 3 |a*b - x*y| : 3
a: 10 b: 3 x: 14 y: 2 |a*b - x*y| : 2
a: 10 b: 4 x: 8 y: 5 |a*b - x*y| : 0
a: 10 b: 8 x: 35 y: 2 |a*b - x*y| : 10
Thank you, Will.
– Tilsight
Nov 25 at 20:41
Just a question, you gave a very quick answer with a lot of examples. How did you do it so effectively? U wrote a script in C?
– Tilsight
Nov 25 at 20:43
add a comment |
apparently not
a: 4 b: 1 x: 2 y: 2 |a*b - x*y| : 0
a: 5 b: 3 x: 7 y: 2 |a*b - x*y| : 1
a: 5 b: 5 x: 8 y: 3 |a*b - x*y| : 1
a: 6 b: 2 x: 4 y: 3 |a*b - x*y| : 0
a: 6 b: 4 x: 11 y: 2 |a*b - x*y| : 2
a: 7 b: 4 x: 9 y: 3 |a*b - x*y| : 1
a: 8 b: 1 x: 3 y: 3 |a*b - x*y| : 1
a: 8 b: 3 x: 6 y: 4 |a*b - x*y| : 0
a: 8 b: 5 x: 18 y: 2 |a*b - x*y| : 4
a: 8 b: 7 x: 11 y: 5 |a*b - x*y| : 1
a: 8 b: 8 x: 20 y: 3 |a*b - x*y| : 4
a: 9 b: 1 x: 5 y: 2 |a*b - x*y| : 1
a: 9 b: 4 x: 6 y: 6 |a*b - x*y| : 0
a: 9 b: 5 x: 11 y: 4 |a*b - x*y| : 1
a: 9 b: 6 x: 24 y: 2 |a*b - x*y| : 6
a: 9 b: 6 x: 17 y: 3 |a*b - x*y| : 3
a: 10 b: 3 x: 14 y: 2 |a*b - x*y| : 2
a: 10 b: 4 x: 8 y: 5 |a*b - x*y| : 0
a: 10 b: 8 x: 35 y: 2 |a*b - x*y| : 10
apparently not
a: 4 b: 1 x: 2 y: 2 |a*b - x*y| : 0
a: 5 b: 3 x: 7 y: 2 |a*b - x*y| : 1
a: 5 b: 5 x: 8 y: 3 |a*b - x*y| : 1
a: 6 b: 2 x: 4 y: 3 |a*b - x*y| : 0
a: 6 b: 4 x: 11 y: 2 |a*b - x*y| : 2
a: 7 b: 4 x: 9 y: 3 |a*b - x*y| : 1
a: 8 b: 1 x: 3 y: 3 |a*b - x*y| : 1
a: 8 b: 3 x: 6 y: 4 |a*b - x*y| : 0
a: 8 b: 5 x: 18 y: 2 |a*b - x*y| : 4
a: 8 b: 7 x: 11 y: 5 |a*b - x*y| : 1
a: 8 b: 8 x: 20 y: 3 |a*b - x*y| : 4
a: 9 b: 1 x: 5 y: 2 |a*b - x*y| : 1
a: 9 b: 4 x: 6 y: 6 |a*b - x*y| : 0
a: 9 b: 5 x: 11 y: 4 |a*b - x*y| : 1
a: 9 b: 6 x: 24 y: 2 |a*b - x*y| : 6
a: 9 b: 6 x: 17 y: 3 |a*b - x*y| : 3
a: 10 b: 3 x: 14 y: 2 |a*b - x*y| : 2
a: 10 b: 4 x: 8 y: 5 |a*b - x*y| : 0
a: 10 b: 8 x: 35 y: 2 |a*b - x*y| : 10
answered Nov 25 at 20:24
Will Jagy
101k599199
101k599199
Thank you, Will.
– Tilsight
Nov 25 at 20:41
Just a question, you gave a very quick answer with a lot of examples. How did you do it so effectively? U wrote a script in C?
– Tilsight
Nov 25 at 20:43
add a comment |
Thank you, Will.
– Tilsight
Nov 25 at 20:41
Just a question, you gave a very quick answer with a lot of examples. How did you do it so effectively? U wrote a script in C?
– Tilsight
Nov 25 at 20:43
Thank you, Will.
– Tilsight
Nov 25 at 20:41
Thank you, Will.
– Tilsight
Nov 25 at 20:41
Just a question, you gave a very quick answer with a lot of examples. How did you do it so effectively? U wrote a script in C?
– Tilsight
Nov 25 at 20:43
Just a question, you gave a very quick answer with a lot of examples. How did you do it so effectively? U wrote a script in C?
– Tilsight
Nov 25 at 20:43
add a comment |
Let for instance $a=1$ so we get that $3 b =n$ , and assume that $x =y$ so we get that $2 x^2 +2 x =n = 3b $ which leads to $x = frac{-2+sqrt{4+24b}}{4}$,
so for instance : for $b=28$ gives that $x = y = 6$ and $a=1$, so $| x y -a b| = 8$ , and you can get the maximum difference as large as you want.
add a comment |
Let for instance $a=1$ so we get that $3 b =n$ , and assume that $x =y$ so we get that $2 x^2 +2 x =n = 3b $ which leads to $x = frac{-2+sqrt{4+24b}}{4}$,
so for instance : for $b=28$ gives that $x = y = 6$ and $a=1$, so $| x y -a b| = 8$ , and you can get the maximum difference as large as you want.
add a comment |
Let for instance $a=1$ so we get that $3 b =n$ , and assume that $x =y$ so we get that $2 x^2 +2 x =n = 3b $ which leads to $x = frac{-2+sqrt{4+24b}}{4}$,
so for instance : for $b=28$ gives that $x = y = 6$ and $a=1$, so $| x y -a b| = 8$ , and you can get the maximum difference as large as you want.
Let for instance $a=1$ so we get that $3 b =n$ , and assume that $x =y$ so we get that $2 x^2 +2 x =n = 3b $ which leads to $x = frac{-2+sqrt{4+24b}}{4}$,
so for instance : for $b=28$ gives that $x = y = 6$ and $a=1$, so $| x y -a b| = 8$ , and you can get the maximum difference as large as you want.
answered Nov 25 at 20:42
Ahmad
2,5241625
2,5241625
add a comment |
add a comment |
Not bounded at all.
With $a equiv 3,4 pmod 5,$ we can take $b = a-3,$ then $y=2$ and
$$ x = frac{2(a-3)(a+1)}{5} $$
With $a equiv 0,1 pmod 5,$ we can take $b = a-2,$ then $y=2$ and
$$ x = frac{2a^2 -2a-5}{5} $$
a: 275 b: 273 x: 30139 y: 2 |a*b - x*y| : 14797
a: 276 b: 274 x: 30359 y: 2 |a*b - x*y| : 14906
a: 278 b: 275 x: 30690 y: 2 |a*b - x*y| : 15070
a: 279 b: 276 x: 30912 y: 2 |a*b - x*y| : 15180
a: 280 b: 278 x: 31247 y: 2 |a*b - x*y| : 15346
a: 281 b: 279 x: 31471 y: 2 |a*b - x*y| : 15457
a: 283 b: 280 x: 31808 y: 2 |a*b - x*y| : 15624
a: 284 b: 281 x: 32034 y: 2 |a*b - x*y| : 15736
a: 285 b: 283 x: 32375 y: 2 |a*b - x*y| : 15905
a: 286 b: 284 x: 32603 y: 2 |a*b - x*y| : 16018
a: 288 b: 285 x: 32946 y: 2 |a*b - x*y| : 16188
a: 289 b: 286 x: 33176 y: 2 |a*b - x*y| : 16302
a: 290 b: 288 x: 33523 y: 2 |a*b - x*y| : 16474
a: 291 b: 289 x: 33755 y: 2 |a*b - x*y| : 16589
a: 293 b: 290 x: 34104 y: 2 |a*b - x*y| : 16762
a: 294 b: 291 x: 34338 y: 2 |a*b - x*y| : 16878
a: 295 b: 293 x: 34691 y: 2 |a*b - x*y| : 17053
a: 296 b: 294 x: 34927 y: 2 |a*b - x*y| : 17170
a: 298 b: 295 x: 35282 y: 2 |a*b - x*y| : 17346
a: 299 b: 296 x: 35520 y: 2 |a*b - x*y| : 17464
a: 300 b: 298 x: 35879 y: 2 |a*b - x*y| : 17642
Thanks guys. Respect 😀
– Tilsight
Nov 25 at 20:57
add a comment |
Not bounded at all.
With $a equiv 3,4 pmod 5,$ we can take $b = a-3,$ then $y=2$ and
$$ x = frac{2(a-3)(a+1)}{5} $$
With $a equiv 0,1 pmod 5,$ we can take $b = a-2,$ then $y=2$ and
$$ x = frac{2a^2 -2a-5}{5} $$
a: 275 b: 273 x: 30139 y: 2 |a*b - x*y| : 14797
a: 276 b: 274 x: 30359 y: 2 |a*b - x*y| : 14906
a: 278 b: 275 x: 30690 y: 2 |a*b - x*y| : 15070
a: 279 b: 276 x: 30912 y: 2 |a*b - x*y| : 15180
a: 280 b: 278 x: 31247 y: 2 |a*b - x*y| : 15346
a: 281 b: 279 x: 31471 y: 2 |a*b - x*y| : 15457
a: 283 b: 280 x: 31808 y: 2 |a*b - x*y| : 15624
a: 284 b: 281 x: 32034 y: 2 |a*b - x*y| : 15736
a: 285 b: 283 x: 32375 y: 2 |a*b - x*y| : 15905
a: 286 b: 284 x: 32603 y: 2 |a*b - x*y| : 16018
a: 288 b: 285 x: 32946 y: 2 |a*b - x*y| : 16188
a: 289 b: 286 x: 33176 y: 2 |a*b - x*y| : 16302
a: 290 b: 288 x: 33523 y: 2 |a*b - x*y| : 16474
a: 291 b: 289 x: 33755 y: 2 |a*b - x*y| : 16589
a: 293 b: 290 x: 34104 y: 2 |a*b - x*y| : 16762
a: 294 b: 291 x: 34338 y: 2 |a*b - x*y| : 16878
a: 295 b: 293 x: 34691 y: 2 |a*b - x*y| : 17053
a: 296 b: 294 x: 34927 y: 2 |a*b - x*y| : 17170
a: 298 b: 295 x: 35282 y: 2 |a*b - x*y| : 17346
a: 299 b: 296 x: 35520 y: 2 |a*b - x*y| : 17464
a: 300 b: 298 x: 35879 y: 2 |a*b - x*y| : 17642
Thanks guys. Respect 😀
– Tilsight
Nov 25 at 20:57
add a comment |
Not bounded at all.
With $a equiv 3,4 pmod 5,$ we can take $b = a-3,$ then $y=2$ and
$$ x = frac{2(a-3)(a+1)}{5} $$
With $a equiv 0,1 pmod 5,$ we can take $b = a-2,$ then $y=2$ and
$$ x = frac{2a^2 -2a-5}{5} $$
a: 275 b: 273 x: 30139 y: 2 |a*b - x*y| : 14797
a: 276 b: 274 x: 30359 y: 2 |a*b - x*y| : 14906
a: 278 b: 275 x: 30690 y: 2 |a*b - x*y| : 15070
a: 279 b: 276 x: 30912 y: 2 |a*b - x*y| : 15180
a: 280 b: 278 x: 31247 y: 2 |a*b - x*y| : 15346
a: 281 b: 279 x: 31471 y: 2 |a*b - x*y| : 15457
a: 283 b: 280 x: 31808 y: 2 |a*b - x*y| : 15624
a: 284 b: 281 x: 32034 y: 2 |a*b - x*y| : 15736
a: 285 b: 283 x: 32375 y: 2 |a*b - x*y| : 15905
a: 286 b: 284 x: 32603 y: 2 |a*b - x*y| : 16018
a: 288 b: 285 x: 32946 y: 2 |a*b - x*y| : 16188
a: 289 b: 286 x: 33176 y: 2 |a*b - x*y| : 16302
a: 290 b: 288 x: 33523 y: 2 |a*b - x*y| : 16474
a: 291 b: 289 x: 33755 y: 2 |a*b - x*y| : 16589
a: 293 b: 290 x: 34104 y: 2 |a*b - x*y| : 16762
a: 294 b: 291 x: 34338 y: 2 |a*b - x*y| : 16878
a: 295 b: 293 x: 34691 y: 2 |a*b - x*y| : 17053
a: 296 b: 294 x: 34927 y: 2 |a*b - x*y| : 17170
a: 298 b: 295 x: 35282 y: 2 |a*b - x*y| : 17346
a: 299 b: 296 x: 35520 y: 2 |a*b - x*y| : 17464
a: 300 b: 298 x: 35879 y: 2 |a*b - x*y| : 17642
Not bounded at all.
With $a equiv 3,4 pmod 5,$ we can take $b = a-3,$ then $y=2$ and
$$ x = frac{2(a-3)(a+1)}{5} $$
With $a equiv 0,1 pmod 5,$ we can take $b = a-2,$ then $y=2$ and
$$ x = frac{2a^2 -2a-5}{5} $$
a: 275 b: 273 x: 30139 y: 2 |a*b - x*y| : 14797
a: 276 b: 274 x: 30359 y: 2 |a*b - x*y| : 14906
a: 278 b: 275 x: 30690 y: 2 |a*b - x*y| : 15070
a: 279 b: 276 x: 30912 y: 2 |a*b - x*y| : 15180
a: 280 b: 278 x: 31247 y: 2 |a*b - x*y| : 15346
a: 281 b: 279 x: 31471 y: 2 |a*b - x*y| : 15457
a: 283 b: 280 x: 31808 y: 2 |a*b - x*y| : 15624
a: 284 b: 281 x: 32034 y: 2 |a*b - x*y| : 15736
a: 285 b: 283 x: 32375 y: 2 |a*b - x*y| : 15905
a: 286 b: 284 x: 32603 y: 2 |a*b - x*y| : 16018
a: 288 b: 285 x: 32946 y: 2 |a*b - x*y| : 16188
a: 289 b: 286 x: 33176 y: 2 |a*b - x*y| : 16302
a: 290 b: 288 x: 33523 y: 2 |a*b - x*y| : 16474
a: 291 b: 289 x: 33755 y: 2 |a*b - x*y| : 16589
a: 293 b: 290 x: 34104 y: 2 |a*b - x*y| : 16762
a: 294 b: 291 x: 34338 y: 2 |a*b - x*y| : 16878
a: 295 b: 293 x: 34691 y: 2 |a*b - x*y| : 17053
a: 296 b: 294 x: 34927 y: 2 |a*b - x*y| : 17170
a: 298 b: 295 x: 35282 y: 2 |a*b - x*y| : 17346
a: 299 b: 296 x: 35520 y: 2 |a*b - x*y| : 17464
a: 300 b: 298 x: 35879 y: 2 |a*b - x*y| : 17642
answered Nov 25 at 20:44
Will Jagy
101k599199
101k599199
Thanks guys. Respect 😀
– Tilsight
Nov 25 at 20:57
add a comment |
Thanks guys. Respect 😀
– Tilsight
Nov 25 at 20:57
Thanks guys. Respect 😀
– Tilsight
Nov 25 at 20:57
Thanks guys. Respect 😀
– Tilsight
Nov 25 at 20:57
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013321%2fon-xy-vs-ab-where-2xyxy1-2abab%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown