Calculate $sum_{k=0}^{n} frac{(-1)^kk}{4k^2-1}$
Calculate $sum_{k=0}^{n} frac{(-1)^k k}{4k^2-1}$
$sum_{k=0}^{n} frac{(-1)^k k}{4k^2-1}=sum_{k=0}^{n} frac{(-1)^k k}{(2k-1)(2k+1)}=sum_{k=0}^{n} (-1)^k kfrac{1}{2}(frac{1}{2k-1}-frac{1}{2k+1})$ after that I get this $sum_{k=0}^{n} (-1)^k frac{k}{2k-1}+(-1)^{n+1}frac{n+1}{2n+1}+sum_{k=0}^{n}frac{1}{2} frac{(-1)^k}{2k+1} $. But that does not help me so much I do not know how to continue, i try everything after I still get the same, can you help me?
discrete-mathematics summation
add a comment |
Calculate $sum_{k=0}^{n} frac{(-1)^k k}{4k^2-1}$
$sum_{k=0}^{n} frac{(-1)^k k}{4k^2-1}=sum_{k=0}^{n} frac{(-1)^k k}{(2k-1)(2k+1)}=sum_{k=0}^{n} (-1)^k kfrac{1}{2}(frac{1}{2k-1}-frac{1}{2k+1})$ after that I get this $sum_{k=0}^{n} (-1)^k frac{k}{2k-1}+(-1)^{n+1}frac{n+1}{2n+1}+sum_{k=0}^{n}frac{1}{2} frac{(-1)^k}{2k+1} $. But that does not help me so much I do not know how to continue, i try everything after I still get the same, can you help me?
discrete-mathematics summation
1
Do you need to show your work? Wolframalpha will do this automatically.
– Ben W
Nov 25 at 20:18
I know but I did not pay so I can not get step by step
– Marko Škorić
Nov 25 at 20:19
If WolframAlpha just shows you the result, you can then prove it straightforwardly by induction on $n$. And if you want, you can then transform that induction proof into a proof by telescope.
– darij grinberg
Nov 25 at 20:22
add a comment |
Calculate $sum_{k=0}^{n} frac{(-1)^k k}{4k^2-1}$
$sum_{k=0}^{n} frac{(-1)^k k}{4k^2-1}=sum_{k=0}^{n} frac{(-1)^k k}{(2k-1)(2k+1)}=sum_{k=0}^{n} (-1)^k kfrac{1}{2}(frac{1}{2k-1}-frac{1}{2k+1})$ after that I get this $sum_{k=0}^{n} (-1)^k frac{k}{2k-1}+(-1)^{n+1}frac{n+1}{2n+1}+sum_{k=0}^{n}frac{1}{2} frac{(-1)^k}{2k+1} $. But that does not help me so much I do not know how to continue, i try everything after I still get the same, can you help me?
discrete-mathematics summation
Calculate $sum_{k=0}^{n} frac{(-1)^k k}{4k^2-1}$
$sum_{k=0}^{n} frac{(-1)^k k}{4k^2-1}=sum_{k=0}^{n} frac{(-1)^k k}{(2k-1)(2k+1)}=sum_{k=0}^{n} (-1)^k kfrac{1}{2}(frac{1}{2k-1}-frac{1}{2k+1})$ after that I get this $sum_{k=0}^{n} (-1)^k frac{k}{2k-1}+(-1)^{n+1}frac{n+1}{2n+1}+sum_{k=0}^{n}frac{1}{2} frac{(-1)^k}{2k+1} $. But that does not help me so much I do not know how to continue, i try everything after I still get the same, can you help me?
discrete-mathematics summation
discrete-mathematics summation
edited Nov 25 at 20:18
asked Nov 25 at 20:17
Marko Škorić
70310
70310
1
Do you need to show your work? Wolframalpha will do this automatically.
– Ben W
Nov 25 at 20:18
I know but I did not pay so I can not get step by step
– Marko Škorić
Nov 25 at 20:19
If WolframAlpha just shows you the result, you can then prove it straightforwardly by induction on $n$. And if you want, you can then transform that induction proof into a proof by telescope.
– darij grinberg
Nov 25 at 20:22
add a comment |
1
Do you need to show your work? Wolframalpha will do this automatically.
– Ben W
Nov 25 at 20:18
I know but I did not pay so I can not get step by step
– Marko Škorić
Nov 25 at 20:19
If WolframAlpha just shows you the result, you can then prove it straightforwardly by induction on $n$. And if you want, you can then transform that induction proof into a proof by telescope.
– darij grinberg
Nov 25 at 20:22
1
1
Do you need to show your work? Wolframalpha will do this automatically.
– Ben W
Nov 25 at 20:18
Do you need to show your work? Wolframalpha will do this automatically.
– Ben W
Nov 25 at 20:18
I know but I did not pay so I can not get step by step
– Marko Škorić
Nov 25 at 20:19
I know but I did not pay so I can not get step by step
– Marko Škorić
Nov 25 at 20:19
If WolframAlpha just shows you the result, you can then prove it straightforwardly by induction on $n$. And if you want, you can then transform that induction proof into a proof by telescope.
– darij grinberg
Nov 25 at 20:22
If WolframAlpha just shows you the result, you can then prove it straightforwardly by induction on $n$. And if you want, you can then transform that induction proof into a proof by telescope.
– darij grinberg
Nov 25 at 20:22
add a comment |
2 Answers
2
active
oldest
votes
$$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=frac{1}{4}sum_{k=0}^n(-1)^kleft[frac{1}{2k-1}+frac{1}{2k+1}right]$$
$$=frac{1}{4}left[frac{1}{-1}+frac{1}{1}-frac{1}{1}-frac{1}{3}+frac{1}{3}+frac{1}{5}-cdots+frac{(-1)^n}{2n-1}+frac{(-1)^n}{2n+1}right]$$
$$=frac{1}{4}left[frac{1}{-1}+frac{(-1)^n}{2n+1}right]$$
add a comment |
HINT
We have that
$$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=sum_{k=0}^nfrac{(-1)^k}4left(frac{1}{2k+1}+frac{1}{2k-1}right)=$$$$=frac14left(0color{red}{-frac13}-1color{red}{+frac15+frac13-frac17-frac15+frac19+frac17}-ldotsright) $$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013334%2fcalculate-sum-k-0n-frac-1kk4k2-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=frac{1}{4}sum_{k=0}^n(-1)^kleft[frac{1}{2k-1}+frac{1}{2k+1}right]$$
$$=frac{1}{4}left[frac{1}{-1}+frac{1}{1}-frac{1}{1}-frac{1}{3}+frac{1}{3}+frac{1}{5}-cdots+frac{(-1)^n}{2n-1}+frac{(-1)^n}{2n+1}right]$$
$$=frac{1}{4}left[frac{1}{-1}+frac{(-1)^n}{2n+1}right]$$
add a comment |
$$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=frac{1}{4}sum_{k=0}^n(-1)^kleft[frac{1}{2k-1}+frac{1}{2k+1}right]$$
$$=frac{1}{4}left[frac{1}{-1}+frac{1}{1}-frac{1}{1}-frac{1}{3}+frac{1}{3}+frac{1}{5}-cdots+frac{(-1)^n}{2n-1}+frac{(-1)^n}{2n+1}right]$$
$$=frac{1}{4}left[frac{1}{-1}+frac{(-1)^n}{2n+1}right]$$
add a comment |
$$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=frac{1}{4}sum_{k=0}^n(-1)^kleft[frac{1}{2k-1}+frac{1}{2k+1}right]$$
$$=frac{1}{4}left[frac{1}{-1}+frac{1}{1}-frac{1}{1}-frac{1}{3}+frac{1}{3}+frac{1}{5}-cdots+frac{(-1)^n}{2n-1}+frac{(-1)^n}{2n+1}right]$$
$$=frac{1}{4}left[frac{1}{-1}+frac{(-1)^n}{2n+1}right]$$
$$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=frac{1}{4}sum_{k=0}^n(-1)^kleft[frac{1}{2k-1}+frac{1}{2k+1}right]$$
$$=frac{1}{4}left[frac{1}{-1}+frac{1}{1}-frac{1}{1}-frac{1}{3}+frac{1}{3}+frac{1}{5}-cdots+frac{(-1)^n}{2n-1}+frac{(-1)^n}{2n+1}right]$$
$$=frac{1}{4}left[frac{1}{-1}+frac{(-1)^n}{2n+1}right]$$
answered Nov 25 at 20:30
Ben W
1,398513
1,398513
add a comment |
add a comment |
HINT
We have that
$$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=sum_{k=0}^nfrac{(-1)^k}4left(frac{1}{2k+1}+frac{1}{2k-1}right)=$$$$=frac14left(0color{red}{-frac13}-1color{red}{+frac15+frac13-frac17-frac15+frac19+frac17}-ldotsright) $$
add a comment |
HINT
We have that
$$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=sum_{k=0}^nfrac{(-1)^k}4left(frac{1}{2k+1}+frac{1}{2k-1}right)=$$$$=frac14left(0color{red}{-frac13}-1color{red}{+frac15+frac13-frac17-frac15+frac19+frac17}-ldotsright) $$
add a comment |
HINT
We have that
$$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=sum_{k=0}^nfrac{(-1)^k}4left(frac{1}{2k+1}+frac{1}{2k-1}right)=$$$$=frac14left(0color{red}{-frac13}-1color{red}{+frac15+frac13-frac17-frac15+frac19+frac17}-ldotsright) $$
HINT
We have that
$$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=sum_{k=0}^nfrac{(-1)^k}4left(frac{1}{2k+1}+frac{1}{2k-1}right)=$$$$=frac14left(0color{red}{-frac13}-1color{red}{+frac15+frac13-frac17-frac15+frac19+frac17}-ldotsright) $$
answered Nov 25 at 20:29
gimusi
1
1
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013334%2fcalculate-sum-k-0n-frac-1kk4k2-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Do you need to show your work? Wolframalpha will do this automatically.
– Ben W
Nov 25 at 20:18
I know but I did not pay so I can not get step by step
– Marko Škorić
Nov 25 at 20:19
If WolframAlpha just shows you the result, you can then prove it straightforwardly by induction on $n$. And if you want, you can then transform that induction proof into a proof by telescope.
– darij grinberg
Nov 25 at 20:22