Calculate $sum_{k=0}^{n} frac{(-1)^kk}{4k^2-1}$












2














Calculate $sum_{k=0}^{n} frac{(-1)^k k}{4k^2-1}$



$sum_{k=0}^{n} frac{(-1)^k k}{4k^2-1}=sum_{k=0}^{n} frac{(-1)^k k}{(2k-1)(2k+1)}=sum_{k=0}^{n} (-1)^k kfrac{1}{2}(frac{1}{2k-1}-frac{1}{2k+1})$ after that I get this $sum_{k=0}^{n} (-1)^k frac{k}{2k-1}+(-1)^{n+1}frac{n+1}{2n+1}+sum_{k=0}^{n}frac{1}{2} frac{(-1)^k}{2k+1} $. But that does not help me so much I do not know how to continue, i try everything after I still get the same, can you help me?










share|cite|improve this question




















  • 1




    Do you need to show your work? Wolframalpha will do this automatically.
    – Ben W
    Nov 25 at 20:18










  • I know but I did not pay so I can not get step by step
    – Marko Škorić
    Nov 25 at 20:19










  • If WolframAlpha just shows you the result, you can then prove it straightforwardly by induction on $n$. And if you want, you can then transform that induction proof into a proof by telescope.
    – darij grinberg
    Nov 25 at 20:22
















2














Calculate $sum_{k=0}^{n} frac{(-1)^k k}{4k^2-1}$



$sum_{k=0}^{n} frac{(-1)^k k}{4k^2-1}=sum_{k=0}^{n} frac{(-1)^k k}{(2k-1)(2k+1)}=sum_{k=0}^{n} (-1)^k kfrac{1}{2}(frac{1}{2k-1}-frac{1}{2k+1})$ after that I get this $sum_{k=0}^{n} (-1)^k frac{k}{2k-1}+(-1)^{n+1}frac{n+1}{2n+1}+sum_{k=0}^{n}frac{1}{2} frac{(-1)^k}{2k+1} $. But that does not help me so much I do not know how to continue, i try everything after I still get the same, can you help me?










share|cite|improve this question




















  • 1




    Do you need to show your work? Wolframalpha will do this automatically.
    – Ben W
    Nov 25 at 20:18










  • I know but I did not pay so I can not get step by step
    – Marko Škorić
    Nov 25 at 20:19










  • If WolframAlpha just shows you the result, you can then prove it straightforwardly by induction on $n$. And if you want, you can then transform that induction proof into a proof by telescope.
    – darij grinberg
    Nov 25 at 20:22














2












2








2


1





Calculate $sum_{k=0}^{n} frac{(-1)^k k}{4k^2-1}$



$sum_{k=0}^{n} frac{(-1)^k k}{4k^2-1}=sum_{k=0}^{n} frac{(-1)^k k}{(2k-1)(2k+1)}=sum_{k=0}^{n} (-1)^k kfrac{1}{2}(frac{1}{2k-1}-frac{1}{2k+1})$ after that I get this $sum_{k=0}^{n} (-1)^k frac{k}{2k-1}+(-1)^{n+1}frac{n+1}{2n+1}+sum_{k=0}^{n}frac{1}{2} frac{(-1)^k}{2k+1} $. But that does not help me so much I do not know how to continue, i try everything after I still get the same, can you help me?










share|cite|improve this question















Calculate $sum_{k=0}^{n} frac{(-1)^k k}{4k^2-1}$



$sum_{k=0}^{n} frac{(-1)^k k}{4k^2-1}=sum_{k=0}^{n} frac{(-1)^k k}{(2k-1)(2k+1)}=sum_{k=0}^{n} (-1)^k kfrac{1}{2}(frac{1}{2k-1}-frac{1}{2k+1})$ after that I get this $sum_{k=0}^{n} (-1)^k frac{k}{2k-1}+(-1)^{n+1}frac{n+1}{2n+1}+sum_{k=0}^{n}frac{1}{2} frac{(-1)^k}{2k+1} $. But that does not help me so much I do not know how to continue, i try everything after I still get the same, can you help me?







discrete-mathematics summation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 25 at 20:18

























asked Nov 25 at 20:17









Marko Škorić

70310




70310








  • 1




    Do you need to show your work? Wolframalpha will do this automatically.
    – Ben W
    Nov 25 at 20:18










  • I know but I did not pay so I can not get step by step
    – Marko Škorić
    Nov 25 at 20:19










  • If WolframAlpha just shows you the result, you can then prove it straightforwardly by induction on $n$. And if you want, you can then transform that induction proof into a proof by telescope.
    – darij grinberg
    Nov 25 at 20:22














  • 1




    Do you need to show your work? Wolframalpha will do this automatically.
    – Ben W
    Nov 25 at 20:18










  • I know but I did not pay so I can not get step by step
    – Marko Škorić
    Nov 25 at 20:19










  • If WolframAlpha just shows you the result, you can then prove it straightforwardly by induction on $n$. And if you want, you can then transform that induction proof into a proof by telescope.
    – darij grinberg
    Nov 25 at 20:22








1




1




Do you need to show your work? Wolframalpha will do this automatically.
– Ben W
Nov 25 at 20:18




Do you need to show your work? Wolframalpha will do this automatically.
– Ben W
Nov 25 at 20:18












I know but I did not pay so I can not get step by step
– Marko Škorić
Nov 25 at 20:19




I know but I did not pay so I can not get step by step
– Marko Škorić
Nov 25 at 20:19












If WolframAlpha just shows you the result, you can then prove it straightforwardly by induction on $n$. And if you want, you can then transform that induction proof into a proof by telescope.
– darij grinberg
Nov 25 at 20:22




If WolframAlpha just shows you the result, you can then prove it straightforwardly by induction on $n$. And if you want, you can then transform that induction proof into a proof by telescope.
– darij grinberg
Nov 25 at 20:22










2 Answers
2






active

oldest

votes


















2














$$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=frac{1}{4}sum_{k=0}^n(-1)^kleft[frac{1}{2k-1}+frac{1}{2k+1}right]$$
$$=frac{1}{4}left[frac{1}{-1}+frac{1}{1}-frac{1}{1}-frac{1}{3}+frac{1}{3}+frac{1}{5}-cdots+frac{(-1)^n}{2n-1}+frac{(-1)^n}{2n+1}right]$$
$$=frac{1}{4}left[frac{1}{-1}+frac{(-1)^n}{2n+1}right]$$






share|cite|improve this answer





























    1














    HINT



    We have that



    $$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=sum_{k=0}^nfrac{(-1)^k}4left(frac{1}{2k+1}+frac{1}{2k-1}right)=$$$$=frac14left(0color{red}{-frac13}-1color{red}{+frac15+frac13-frac17-frac15+frac19+frac17}-ldotsright) $$






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013334%2fcalculate-sum-k-0n-frac-1kk4k2-1%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2














      $$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=frac{1}{4}sum_{k=0}^n(-1)^kleft[frac{1}{2k-1}+frac{1}{2k+1}right]$$
      $$=frac{1}{4}left[frac{1}{-1}+frac{1}{1}-frac{1}{1}-frac{1}{3}+frac{1}{3}+frac{1}{5}-cdots+frac{(-1)^n}{2n-1}+frac{(-1)^n}{2n+1}right]$$
      $$=frac{1}{4}left[frac{1}{-1}+frac{(-1)^n}{2n+1}right]$$






      share|cite|improve this answer


























        2














        $$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=frac{1}{4}sum_{k=0}^n(-1)^kleft[frac{1}{2k-1}+frac{1}{2k+1}right]$$
        $$=frac{1}{4}left[frac{1}{-1}+frac{1}{1}-frac{1}{1}-frac{1}{3}+frac{1}{3}+frac{1}{5}-cdots+frac{(-1)^n}{2n-1}+frac{(-1)^n}{2n+1}right]$$
        $$=frac{1}{4}left[frac{1}{-1}+frac{(-1)^n}{2n+1}right]$$






        share|cite|improve this answer
























          2












          2








          2






          $$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=frac{1}{4}sum_{k=0}^n(-1)^kleft[frac{1}{2k-1}+frac{1}{2k+1}right]$$
          $$=frac{1}{4}left[frac{1}{-1}+frac{1}{1}-frac{1}{1}-frac{1}{3}+frac{1}{3}+frac{1}{5}-cdots+frac{(-1)^n}{2n-1}+frac{(-1)^n}{2n+1}right]$$
          $$=frac{1}{4}left[frac{1}{-1}+frac{(-1)^n}{2n+1}right]$$






          share|cite|improve this answer












          $$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=frac{1}{4}sum_{k=0}^n(-1)^kleft[frac{1}{2k-1}+frac{1}{2k+1}right]$$
          $$=frac{1}{4}left[frac{1}{-1}+frac{1}{1}-frac{1}{1}-frac{1}{3}+frac{1}{3}+frac{1}{5}-cdots+frac{(-1)^n}{2n-1}+frac{(-1)^n}{2n+1}right]$$
          $$=frac{1}{4}left[frac{1}{-1}+frac{(-1)^n}{2n+1}right]$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 25 at 20:30









          Ben W

          1,398513




          1,398513























              1














              HINT



              We have that



              $$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=sum_{k=0}^nfrac{(-1)^k}4left(frac{1}{2k+1}+frac{1}{2k-1}right)=$$$$=frac14left(0color{red}{-frac13}-1color{red}{+frac15+frac13-frac17-frac15+frac19+frac17}-ldotsright) $$






              share|cite|improve this answer


























                1














                HINT



                We have that



                $$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=sum_{k=0}^nfrac{(-1)^k}4left(frac{1}{2k+1}+frac{1}{2k-1}right)=$$$$=frac14left(0color{red}{-frac13}-1color{red}{+frac15+frac13-frac17-frac15+frac19+frac17}-ldotsright) $$






                share|cite|improve this answer
























                  1












                  1








                  1






                  HINT



                  We have that



                  $$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=sum_{k=0}^nfrac{(-1)^k}4left(frac{1}{2k+1}+frac{1}{2k-1}right)=$$$$=frac14left(0color{red}{-frac13}-1color{red}{+frac15+frac13-frac17-frac15+frac19+frac17}-ldotsright) $$






                  share|cite|improve this answer












                  HINT



                  We have that



                  $$sum_{k=0}^nfrac{(-1)^kk}{4k^2-1}=sum_{k=0}^nfrac{(-1)^k}4left(frac{1}{2k+1}+frac{1}{2k-1}right)=$$$$=frac14left(0color{red}{-frac13}-1color{red}{+frac15+frac13-frac17-frac15+frac19+frac17}-ldotsright) $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 25 at 20:29









                  gimusi

                  1




                  1






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013334%2fcalculate-sum-k-0n-frac-1kk4k2-1%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Probability when a professor distributes a quiz and homework assignment to a class of n students.

                      Aardman Animations

                      Are they similar matrix