Write the first four terms of the taylor series for the function $f(x, y) = ln(1 + x + y)$ around the point...











up vote
0
down vote

favorite












(a) Write the first four terms of the taylor series for the function $f(x, y) = ln(1 + x + y)$ around the point $(x, y) = (0, 0)$



$f(0,0) = 0$



$f_x(x, y) = frac{1}{1+x+y}|_{0,0} = 1$



$f_y(x, y) = frac{1}{1+x+y}|_{0,0} = 1$



$f_{xx}(x, y) = frac{-1}{(1+x+y)}|_{0,0} = -1$



$f_{yy}(x, y) = frac{-1}{(1+x+y)^2}|_{0,0} = -1$



$f_{xy}(x, y) = frac{-1}{(1+x+y)^2}|_{0,0} = -1$



therefore the first four terms are



$= 0 + [x cdot 1 + y cdot 1] + frac{1}{2}(x^2(-1) + 2xy(-1) + y^2(-1)) = x + y - frac{1}{2}left[x^2 + 2xy + y^2right] + cdots$



would this be correct?










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    (a) Write the first four terms of the taylor series for the function $f(x, y) = ln(1 + x + y)$ around the point $(x, y) = (0, 0)$



    $f(0,0) = 0$



    $f_x(x, y) = frac{1}{1+x+y}|_{0,0} = 1$



    $f_y(x, y) = frac{1}{1+x+y}|_{0,0} = 1$



    $f_{xx}(x, y) = frac{-1}{(1+x+y)}|_{0,0} = -1$



    $f_{yy}(x, y) = frac{-1}{(1+x+y)^2}|_{0,0} = -1$



    $f_{xy}(x, y) = frac{-1}{(1+x+y)^2}|_{0,0} = -1$



    therefore the first four terms are



    $= 0 + [x cdot 1 + y cdot 1] + frac{1}{2}(x^2(-1) + 2xy(-1) + y^2(-1)) = x + y - frac{1}{2}left[x^2 + 2xy + y^2right] + cdots$



    would this be correct?










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      (a) Write the first four terms of the taylor series for the function $f(x, y) = ln(1 + x + y)$ around the point $(x, y) = (0, 0)$



      $f(0,0) = 0$



      $f_x(x, y) = frac{1}{1+x+y}|_{0,0} = 1$



      $f_y(x, y) = frac{1}{1+x+y}|_{0,0} = 1$



      $f_{xx}(x, y) = frac{-1}{(1+x+y)}|_{0,0} = -1$



      $f_{yy}(x, y) = frac{-1}{(1+x+y)^2}|_{0,0} = -1$



      $f_{xy}(x, y) = frac{-1}{(1+x+y)^2}|_{0,0} = -1$



      therefore the first four terms are



      $= 0 + [x cdot 1 + y cdot 1] + frac{1}{2}(x^2(-1) + 2xy(-1) + y^2(-1)) = x + y - frac{1}{2}left[x^2 + 2xy + y^2right] + cdots$



      would this be correct?










      share|cite|improve this question













      (a) Write the first four terms of the taylor series for the function $f(x, y) = ln(1 + x + y)$ around the point $(x, y) = (0, 0)$



      $f(0,0) = 0$



      $f_x(x, y) = frac{1}{1+x+y}|_{0,0} = 1$



      $f_y(x, y) = frac{1}{1+x+y}|_{0,0} = 1$



      $f_{xx}(x, y) = frac{-1}{(1+x+y)}|_{0,0} = -1$



      $f_{yy}(x, y) = frac{-1}{(1+x+y)^2}|_{0,0} = -1$



      $f_{xy}(x, y) = frac{-1}{(1+x+y)^2}|_{0,0} = -1$



      therefore the first four terms are



      $= 0 + [x cdot 1 + y cdot 1] + frac{1}{2}(x^2(-1) + 2xy(-1) + y^2(-1)) = x + y - frac{1}{2}left[x^2 + 2xy + y^2right] + cdots$



      would this be correct?







      multivariable-calculus






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 16 at 0:33









      Tree Garen

      35019




      35019






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote



          accepted










          $frac {d}{du} ln (1+u) = frac 1{1+u}\
          frac {1}{1+u} = sum_limits{n=0}^{infty} (-1)^{n} u^n\
          int_1^{u} sum_limits{n=0}^{infty} (-1)^{n}u^n = sum_limits{n=1}^{infty} (-1)^{n+1}frac {u^n}{n} = ln (1+u)$



          $u = x + y\
          ln(1+x+y) = sum_limits{n=1}^{infty} (-1)^{n+1}frac {(x+y)^n}{n}$



          The first four terms are $x + y - frac{x^2}{2} - xy - frac {y^2}{2} $



          Looks like we match.






          share|cite|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000550%2fwrite-the-first-four-terms-of-the-taylor-series-for-the-function-fx-y-ln1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote



            accepted










            $frac {d}{du} ln (1+u) = frac 1{1+u}\
            frac {1}{1+u} = sum_limits{n=0}^{infty} (-1)^{n} u^n\
            int_1^{u} sum_limits{n=0}^{infty} (-1)^{n}u^n = sum_limits{n=1}^{infty} (-1)^{n+1}frac {u^n}{n} = ln (1+u)$



            $u = x + y\
            ln(1+x+y) = sum_limits{n=1}^{infty} (-1)^{n+1}frac {(x+y)^n}{n}$



            The first four terms are $x + y - frac{x^2}{2} - xy - frac {y^2}{2} $



            Looks like we match.






            share|cite|improve this answer



























              up vote
              0
              down vote



              accepted










              $frac {d}{du} ln (1+u) = frac 1{1+u}\
              frac {1}{1+u} = sum_limits{n=0}^{infty} (-1)^{n} u^n\
              int_1^{u} sum_limits{n=0}^{infty} (-1)^{n}u^n = sum_limits{n=1}^{infty} (-1)^{n+1}frac {u^n}{n} = ln (1+u)$



              $u = x + y\
              ln(1+x+y) = sum_limits{n=1}^{infty} (-1)^{n+1}frac {(x+y)^n}{n}$



              The first four terms are $x + y - frac{x^2}{2} - xy - frac {y^2}{2} $



              Looks like we match.






              share|cite|improve this answer

























                up vote
                0
                down vote



                accepted







                up vote
                0
                down vote



                accepted






                $frac {d}{du} ln (1+u) = frac 1{1+u}\
                frac {1}{1+u} = sum_limits{n=0}^{infty} (-1)^{n} u^n\
                int_1^{u} sum_limits{n=0}^{infty} (-1)^{n}u^n = sum_limits{n=1}^{infty} (-1)^{n+1}frac {u^n}{n} = ln (1+u)$



                $u = x + y\
                ln(1+x+y) = sum_limits{n=1}^{infty} (-1)^{n+1}frac {(x+y)^n}{n}$



                The first four terms are $x + y - frac{x^2}{2} - xy - frac {y^2}{2} $



                Looks like we match.






                share|cite|improve this answer














                $frac {d}{du} ln (1+u) = frac 1{1+u}\
                frac {1}{1+u} = sum_limits{n=0}^{infty} (-1)^{n} u^n\
                int_1^{u} sum_limits{n=0}^{infty} (-1)^{n}u^n = sum_limits{n=1}^{infty} (-1)^{n+1}frac {u^n}{n} = ln (1+u)$



                $u = x + y\
                ln(1+x+y) = sum_limits{n=1}^{infty} (-1)^{n+1}frac {(x+y)^n}{n}$



                The first four terms are $x + y - frac{x^2}{2} - xy - frac {y^2}{2} $



                Looks like we match.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Nov 16 at 1:04

























                answered Nov 16 at 0:41









                Doug M

                42.7k31752




                42.7k31752






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000550%2fwrite-the-first-four-terms-of-the-taylor-series-for-the-function-fx-y-ln1%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Probability when a professor distributes a quiz and homework assignment to a class of n students.

                    Aardman Animations

                    Are they similar matrix