Write the first four terms of the taylor series for the function $f(x, y) = ln(1 + x + y)$ around the point...
up vote
0
down vote
favorite
(a) Write the first four terms of the taylor series for the function $f(x, y) = ln(1 + x + y)$ around the point $(x, y) = (0, 0)$
$f(0,0) = 0$
$f_x(x, y) = frac{1}{1+x+y}|_{0,0} = 1$
$f_y(x, y) = frac{1}{1+x+y}|_{0,0} = 1$
$f_{xx}(x, y) = frac{-1}{(1+x+y)}|_{0,0} = -1$
$f_{yy}(x, y) = frac{-1}{(1+x+y)^2}|_{0,0} = -1$
$f_{xy}(x, y) = frac{-1}{(1+x+y)^2}|_{0,0} = -1$
therefore the first four terms are
$= 0 + [x cdot 1 + y cdot 1] + frac{1}{2}(x^2(-1) + 2xy(-1) + y^2(-1)) = x + y - frac{1}{2}left[x^2 + 2xy + y^2right] + cdots$
would this be correct?
multivariable-calculus
add a comment |
up vote
0
down vote
favorite
(a) Write the first four terms of the taylor series for the function $f(x, y) = ln(1 + x + y)$ around the point $(x, y) = (0, 0)$
$f(0,0) = 0$
$f_x(x, y) = frac{1}{1+x+y}|_{0,0} = 1$
$f_y(x, y) = frac{1}{1+x+y}|_{0,0} = 1$
$f_{xx}(x, y) = frac{-1}{(1+x+y)}|_{0,0} = -1$
$f_{yy}(x, y) = frac{-1}{(1+x+y)^2}|_{0,0} = -1$
$f_{xy}(x, y) = frac{-1}{(1+x+y)^2}|_{0,0} = -1$
therefore the first four terms are
$= 0 + [x cdot 1 + y cdot 1] + frac{1}{2}(x^2(-1) + 2xy(-1) + y^2(-1)) = x + y - frac{1}{2}left[x^2 + 2xy + y^2right] + cdots$
would this be correct?
multivariable-calculus
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
(a) Write the first four terms of the taylor series for the function $f(x, y) = ln(1 + x + y)$ around the point $(x, y) = (0, 0)$
$f(0,0) = 0$
$f_x(x, y) = frac{1}{1+x+y}|_{0,0} = 1$
$f_y(x, y) = frac{1}{1+x+y}|_{0,0} = 1$
$f_{xx}(x, y) = frac{-1}{(1+x+y)}|_{0,0} = -1$
$f_{yy}(x, y) = frac{-1}{(1+x+y)^2}|_{0,0} = -1$
$f_{xy}(x, y) = frac{-1}{(1+x+y)^2}|_{0,0} = -1$
therefore the first four terms are
$= 0 + [x cdot 1 + y cdot 1] + frac{1}{2}(x^2(-1) + 2xy(-1) + y^2(-1)) = x + y - frac{1}{2}left[x^2 + 2xy + y^2right] + cdots$
would this be correct?
multivariable-calculus
(a) Write the first four terms of the taylor series for the function $f(x, y) = ln(1 + x + y)$ around the point $(x, y) = (0, 0)$
$f(0,0) = 0$
$f_x(x, y) = frac{1}{1+x+y}|_{0,0} = 1$
$f_y(x, y) = frac{1}{1+x+y}|_{0,0} = 1$
$f_{xx}(x, y) = frac{-1}{(1+x+y)}|_{0,0} = -1$
$f_{yy}(x, y) = frac{-1}{(1+x+y)^2}|_{0,0} = -1$
$f_{xy}(x, y) = frac{-1}{(1+x+y)^2}|_{0,0} = -1$
therefore the first four terms are
$= 0 + [x cdot 1 + y cdot 1] + frac{1}{2}(x^2(-1) + 2xy(-1) + y^2(-1)) = x + y - frac{1}{2}left[x^2 + 2xy + y^2right] + cdots$
would this be correct?
multivariable-calculus
multivariable-calculus
asked Nov 16 at 0:33
Tree Garen
35019
35019
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
$frac {d}{du} ln (1+u) = frac 1{1+u}\
frac {1}{1+u} = sum_limits{n=0}^{infty} (-1)^{n} u^n\
int_1^{u} sum_limits{n=0}^{infty} (-1)^{n}u^n = sum_limits{n=1}^{infty} (-1)^{n+1}frac {u^n}{n} = ln (1+u)$
$u = x + y\
ln(1+x+y) = sum_limits{n=1}^{infty} (-1)^{n+1}frac {(x+y)^n}{n}$
The first four terms are $x + y - frac{x^2}{2} - xy - frac {y^2}{2} $
Looks like we match.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
$frac {d}{du} ln (1+u) = frac 1{1+u}\
frac {1}{1+u} = sum_limits{n=0}^{infty} (-1)^{n} u^n\
int_1^{u} sum_limits{n=0}^{infty} (-1)^{n}u^n = sum_limits{n=1}^{infty} (-1)^{n+1}frac {u^n}{n} = ln (1+u)$
$u = x + y\
ln(1+x+y) = sum_limits{n=1}^{infty} (-1)^{n+1}frac {(x+y)^n}{n}$
The first four terms are $x + y - frac{x^2}{2} - xy - frac {y^2}{2} $
Looks like we match.
add a comment |
up vote
0
down vote
accepted
$frac {d}{du} ln (1+u) = frac 1{1+u}\
frac {1}{1+u} = sum_limits{n=0}^{infty} (-1)^{n} u^n\
int_1^{u} sum_limits{n=0}^{infty} (-1)^{n}u^n = sum_limits{n=1}^{infty} (-1)^{n+1}frac {u^n}{n} = ln (1+u)$
$u = x + y\
ln(1+x+y) = sum_limits{n=1}^{infty} (-1)^{n+1}frac {(x+y)^n}{n}$
The first four terms are $x + y - frac{x^2}{2} - xy - frac {y^2}{2} $
Looks like we match.
add a comment |
up vote
0
down vote
accepted
up vote
0
down vote
accepted
$frac {d}{du} ln (1+u) = frac 1{1+u}\
frac {1}{1+u} = sum_limits{n=0}^{infty} (-1)^{n} u^n\
int_1^{u} sum_limits{n=0}^{infty} (-1)^{n}u^n = sum_limits{n=1}^{infty} (-1)^{n+1}frac {u^n}{n} = ln (1+u)$
$u = x + y\
ln(1+x+y) = sum_limits{n=1}^{infty} (-1)^{n+1}frac {(x+y)^n}{n}$
The first four terms are $x + y - frac{x^2}{2} - xy - frac {y^2}{2} $
Looks like we match.
$frac {d}{du} ln (1+u) = frac 1{1+u}\
frac {1}{1+u} = sum_limits{n=0}^{infty} (-1)^{n} u^n\
int_1^{u} sum_limits{n=0}^{infty} (-1)^{n}u^n = sum_limits{n=1}^{infty} (-1)^{n+1}frac {u^n}{n} = ln (1+u)$
$u = x + y\
ln(1+x+y) = sum_limits{n=1}^{infty} (-1)^{n+1}frac {(x+y)^n}{n}$
The first four terms are $x + y - frac{x^2}{2} - xy - frac {y^2}{2} $
Looks like we match.
edited Nov 16 at 1:04
answered Nov 16 at 0:41
Doug M
42.7k31752
42.7k31752
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000550%2fwrite-the-first-four-terms-of-the-taylor-series-for-the-function-fx-y-ln1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown