Give the forth order taylor polynomial for the function $f(x, y) = cos(xy)$ around the point $(x, y) = (0,0)$
up vote
2
down vote
favorite
Give the forth order taylor polynomial for the function $f(x, y) = cos(xy)$ around the point $(x, y) = (0,0)$
$f(x, y) = cos(x, y)|_{0,0} = 1$
$f_{x}(x, y) = -xsin(xy)|_{0,0} = 0$
$f_{y}(x, y) = -xsin(x, y)|_{0,0} = 0$
$f_{xx}(x, y) = -x^2cos(x, y)|_{0,0} = 0$
$f_{yy}(x, y) = -x^2cos(x, y)|_{0,0} = 0$
$f_{xy} = -[y^2cos(xy) + sin(xy)]|_{0,0} = 0$
$f_{xxx} = y^3(sin(x, y))|_{0,0} = 0$
$f_{xxy} = [-y^3sin(xy) + 2ycos(xy)]|_{0,0} = 0$
$f_{xyy} = [-y^3sin(xy) + 2ycos(xy) + cos(xy)]|_{0,0} = 0$
$f_{xxxx} = y^4cos(x, y)|_{0,0} = 0$
$f_{yyyy} = x^4cos(x, y)|_{0,0} = 0$
$f_{xxxy} = [y^4cos(x, y) + 3y^2sin(xy)]|_{0,0} = 0$
$f_{xxyy} = [-(y^4cos(xy) + 3y^2sin(xy))]|_{0,0} = -2$
$f_{xyyy} = -[-(y^4cos(xy) + 3y^2sin(xy)) + 3[-y^2sin(xy) + cos(xy)]]|_{0,0} = -3$
using the equation
$f(x, y) = 1 + [0 + 0] + 1/2 [0 + 0 + 0] + 1/6 [0 + 0 + 0] + 1/24 [0 + 0] + 6x^2y^2(-2) + 4xy^5 -3 + 0$
$f(x, y) = 1 + 1/24(-12x^2y^2 - 12xy^3) + cdots$
$= 1 - 1/2(x^2y^2 - xy^3) + cdots$
is this right?
Tried a simpler approach:
$f(xy) = cos(xy)$ let $xy = t$
$f(t) = 1 - frac{t^2}{2} + frac{t^4}{4} - frac{t^6}{6}$
$f(x, y) = 1 - frac{x^2y^2}{2} + frac{x^4y^4}{4} + cdots$
4th order polynomial is
$p_4(x) = 1 - frac{x^2y^2}{2} + frac{x^4y^4}{2}$
multivariable-calculus
add a comment |
up vote
2
down vote
favorite
Give the forth order taylor polynomial for the function $f(x, y) = cos(xy)$ around the point $(x, y) = (0,0)$
$f(x, y) = cos(x, y)|_{0,0} = 1$
$f_{x}(x, y) = -xsin(xy)|_{0,0} = 0$
$f_{y}(x, y) = -xsin(x, y)|_{0,0} = 0$
$f_{xx}(x, y) = -x^2cos(x, y)|_{0,0} = 0$
$f_{yy}(x, y) = -x^2cos(x, y)|_{0,0} = 0$
$f_{xy} = -[y^2cos(xy) + sin(xy)]|_{0,0} = 0$
$f_{xxx} = y^3(sin(x, y))|_{0,0} = 0$
$f_{xxy} = [-y^3sin(xy) + 2ycos(xy)]|_{0,0} = 0$
$f_{xyy} = [-y^3sin(xy) + 2ycos(xy) + cos(xy)]|_{0,0} = 0$
$f_{xxxx} = y^4cos(x, y)|_{0,0} = 0$
$f_{yyyy} = x^4cos(x, y)|_{0,0} = 0$
$f_{xxxy} = [y^4cos(x, y) + 3y^2sin(xy)]|_{0,0} = 0$
$f_{xxyy} = [-(y^4cos(xy) + 3y^2sin(xy))]|_{0,0} = -2$
$f_{xyyy} = -[-(y^4cos(xy) + 3y^2sin(xy)) + 3[-y^2sin(xy) + cos(xy)]]|_{0,0} = -3$
using the equation
$f(x, y) = 1 + [0 + 0] + 1/2 [0 + 0 + 0] + 1/6 [0 + 0 + 0] + 1/24 [0 + 0] + 6x^2y^2(-2) + 4xy^5 -3 + 0$
$f(x, y) = 1 + 1/24(-12x^2y^2 - 12xy^3) + cdots$
$= 1 - 1/2(x^2y^2 - xy^3) + cdots$
is this right?
Tried a simpler approach:
$f(xy) = cos(xy)$ let $xy = t$
$f(t) = 1 - frac{t^2}{2} + frac{t^4}{4} - frac{t^6}{6}$
$f(x, y) = 1 - frac{x^2y^2}{2} + frac{x^4y^4}{4} + cdots$
4th order polynomial is
$p_4(x) = 1 - frac{x^2y^2}{2} + frac{x^4y^4}{2}$
multivariable-calculus
No. Note that from symmetry, $f_{xyyy}(0,0) = f_{yxxx}(0,0)$, so one of your evaluations there is wrong.
– eyeballfrog
Nov 16 at 1:43
what about the updated answer?
– Tinler
Nov 16 at 2:08
Using the simpler approach $f(t)=1-frac{t^2}{2}+frac{t^4}{color{red}{24}}+Oleft(t^6right)$
– Claude Leibovici
Nov 16 at 5:52
what does the O mean, could I leave the answer as $1 - frac{x^2y^2}{2} + frac{x^2y^2}{24}$
– Tinler
Nov 16 at 6:00
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Give the forth order taylor polynomial for the function $f(x, y) = cos(xy)$ around the point $(x, y) = (0,0)$
$f(x, y) = cos(x, y)|_{0,0} = 1$
$f_{x}(x, y) = -xsin(xy)|_{0,0} = 0$
$f_{y}(x, y) = -xsin(x, y)|_{0,0} = 0$
$f_{xx}(x, y) = -x^2cos(x, y)|_{0,0} = 0$
$f_{yy}(x, y) = -x^2cos(x, y)|_{0,0} = 0$
$f_{xy} = -[y^2cos(xy) + sin(xy)]|_{0,0} = 0$
$f_{xxx} = y^3(sin(x, y))|_{0,0} = 0$
$f_{xxy} = [-y^3sin(xy) + 2ycos(xy)]|_{0,0} = 0$
$f_{xyy} = [-y^3sin(xy) + 2ycos(xy) + cos(xy)]|_{0,0} = 0$
$f_{xxxx} = y^4cos(x, y)|_{0,0} = 0$
$f_{yyyy} = x^4cos(x, y)|_{0,0} = 0$
$f_{xxxy} = [y^4cos(x, y) + 3y^2sin(xy)]|_{0,0} = 0$
$f_{xxyy} = [-(y^4cos(xy) + 3y^2sin(xy))]|_{0,0} = -2$
$f_{xyyy} = -[-(y^4cos(xy) + 3y^2sin(xy)) + 3[-y^2sin(xy) + cos(xy)]]|_{0,0} = -3$
using the equation
$f(x, y) = 1 + [0 + 0] + 1/2 [0 + 0 + 0] + 1/6 [0 + 0 + 0] + 1/24 [0 + 0] + 6x^2y^2(-2) + 4xy^5 -3 + 0$
$f(x, y) = 1 + 1/24(-12x^2y^2 - 12xy^3) + cdots$
$= 1 - 1/2(x^2y^2 - xy^3) + cdots$
is this right?
Tried a simpler approach:
$f(xy) = cos(xy)$ let $xy = t$
$f(t) = 1 - frac{t^2}{2} + frac{t^4}{4} - frac{t^6}{6}$
$f(x, y) = 1 - frac{x^2y^2}{2} + frac{x^4y^4}{4} + cdots$
4th order polynomial is
$p_4(x) = 1 - frac{x^2y^2}{2} + frac{x^4y^4}{2}$
multivariable-calculus
Give the forth order taylor polynomial for the function $f(x, y) = cos(xy)$ around the point $(x, y) = (0,0)$
$f(x, y) = cos(x, y)|_{0,0} = 1$
$f_{x}(x, y) = -xsin(xy)|_{0,0} = 0$
$f_{y}(x, y) = -xsin(x, y)|_{0,0} = 0$
$f_{xx}(x, y) = -x^2cos(x, y)|_{0,0} = 0$
$f_{yy}(x, y) = -x^2cos(x, y)|_{0,0} = 0$
$f_{xy} = -[y^2cos(xy) + sin(xy)]|_{0,0} = 0$
$f_{xxx} = y^3(sin(x, y))|_{0,0} = 0$
$f_{xxy} = [-y^3sin(xy) + 2ycos(xy)]|_{0,0} = 0$
$f_{xyy} = [-y^3sin(xy) + 2ycos(xy) + cos(xy)]|_{0,0} = 0$
$f_{xxxx} = y^4cos(x, y)|_{0,0} = 0$
$f_{yyyy} = x^4cos(x, y)|_{0,0} = 0$
$f_{xxxy} = [y^4cos(x, y) + 3y^2sin(xy)]|_{0,0} = 0$
$f_{xxyy} = [-(y^4cos(xy) + 3y^2sin(xy))]|_{0,0} = -2$
$f_{xyyy} = -[-(y^4cos(xy) + 3y^2sin(xy)) + 3[-y^2sin(xy) + cos(xy)]]|_{0,0} = -3$
using the equation
$f(x, y) = 1 + [0 + 0] + 1/2 [0 + 0 + 0] + 1/6 [0 + 0 + 0] + 1/24 [0 + 0] + 6x^2y^2(-2) + 4xy^5 -3 + 0$
$f(x, y) = 1 + 1/24(-12x^2y^2 - 12xy^3) + cdots$
$= 1 - 1/2(x^2y^2 - xy^3) + cdots$
is this right?
Tried a simpler approach:
$f(xy) = cos(xy)$ let $xy = t$
$f(t) = 1 - frac{t^2}{2} + frac{t^4}{4} - frac{t^6}{6}$
$f(x, y) = 1 - frac{x^2y^2}{2} + frac{x^4y^4}{4} + cdots$
4th order polynomial is
$p_4(x) = 1 - frac{x^2y^2}{2} + frac{x^4y^4}{2}$
multivariable-calculus
multivariable-calculus
edited Nov 16 at 2:08
asked Nov 16 at 0:41
Tinler
517311
517311
No. Note that from symmetry, $f_{xyyy}(0,0) = f_{yxxx}(0,0)$, so one of your evaluations there is wrong.
– eyeballfrog
Nov 16 at 1:43
what about the updated answer?
– Tinler
Nov 16 at 2:08
Using the simpler approach $f(t)=1-frac{t^2}{2}+frac{t^4}{color{red}{24}}+Oleft(t^6right)$
– Claude Leibovici
Nov 16 at 5:52
what does the O mean, could I leave the answer as $1 - frac{x^2y^2}{2} + frac{x^2y^2}{24}$
– Tinler
Nov 16 at 6:00
add a comment |
No. Note that from symmetry, $f_{xyyy}(0,0) = f_{yxxx}(0,0)$, so one of your evaluations there is wrong.
– eyeballfrog
Nov 16 at 1:43
what about the updated answer?
– Tinler
Nov 16 at 2:08
Using the simpler approach $f(t)=1-frac{t^2}{2}+frac{t^4}{color{red}{24}}+Oleft(t^6right)$
– Claude Leibovici
Nov 16 at 5:52
what does the O mean, could I leave the answer as $1 - frac{x^2y^2}{2} + frac{x^2y^2}{24}$
– Tinler
Nov 16 at 6:00
No. Note that from symmetry, $f_{xyyy}(0,0) = f_{yxxx}(0,0)$, so one of your evaluations there is wrong.
– eyeballfrog
Nov 16 at 1:43
No. Note that from symmetry, $f_{xyyy}(0,0) = f_{yxxx}(0,0)$, so one of your evaluations there is wrong.
– eyeballfrog
Nov 16 at 1:43
what about the updated answer?
– Tinler
Nov 16 at 2:08
what about the updated answer?
– Tinler
Nov 16 at 2:08
Using the simpler approach $f(t)=1-frac{t^2}{2}+frac{t^4}{color{red}{24}}+Oleft(t^6right)$
– Claude Leibovici
Nov 16 at 5:52
Using the simpler approach $f(t)=1-frac{t^2}{2}+frac{t^4}{color{red}{24}}+Oleft(t^6right)$
– Claude Leibovici
Nov 16 at 5:52
what does the O mean, could I leave the answer as $1 - frac{x^2y^2}{2} + frac{x^2y^2}{24}$
– Tinler
Nov 16 at 6:00
what does the O mean, could I leave the answer as $1 - frac{x^2y^2}{2} + frac{x^2y^2}{24}$
– Tinler
Nov 16 at 6:00
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000557%2fgive-the-forth-order-taylor-polynomial-for-the-function-fx-y-cosxy-arou%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
No. Note that from symmetry, $f_{xyyy}(0,0) = f_{yxxx}(0,0)$, so one of your evaluations there is wrong.
– eyeballfrog
Nov 16 at 1:43
what about the updated answer?
– Tinler
Nov 16 at 2:08
Using the simpler approach $f(t)=1-frac{t^2}{2}+frac{t^4}{color{red}{24}}+Oleft(t^6right)$
– Claude Leibovici
Nov 16 at 5:52
what does the O mean, could I leave the answer as $1 - frac{x^2y^2}{2} + frac{x^2y^2}{24}$
– Tinler
Nov 16 at 6:00