Give the forth order taylor polynomial for the function $f(x, y) = cos(xy)$ around the point $(x, y) = (0,0)$











up vote
2
down vote

favorite












Give the forth order taylor polynomial for the function $f(x, y) = cos(xy)$ around the point $(x, y) = (0,0)$



$f(x, y) = cos(x, y)|_{0,0} = 1$



$f_{x}(x, y) = -xsin(xy)|_{0,0} = 0$



$f_{y}(x, y) = -xsin(x, y)|_{0,0} = 0$



$f_{xx}(x, y) = -x^2cos(x, y)|_{0,0} = 0$



$f_{yy}(x, y) = -x^2cos(x, y)|_{0,0} = 0$



$f_{xy} = -[y^2cos(xy) + sin(xy)]|_{0,0} = 0$



$f_{xxx} = y^3(sin(x, y))|_{0,0} = 0$



$f_{xxy} = [-y^3sin(xy) + 2ycos(xy)]|_{0,0} = 0$



$f_{xyy} = [-y^3sin(xy) + 2ycos(xy) + cos(xy)]|_{0,0} = 0$



$f_{xxxx} = y^4cos(x, y)|_{0,0} = 0$



$f_{yyyy} = x^4cos(x, y)|_{0,0} = 0$



$f_{xxxy} = [y^4cos(x, y) + 3y^2sin(xy)]|_{0,0} = 0$



$f_{xxyy} = [-(y^4cos(xy) + 3y^2sin(xy))]|_{0,0} = -2$



$f_{xyyy} = -[-(y^4cos(xy) + 3y^2sin(xy)) + 3[-y^2sin(xy) + cos(xy)]]|_{0,0} = -3$



using the equation



$f(x, y) = 1 + [0 + 0] + 1/2 [0 + 0 + 0] + 1/6 [0 + 0 + 0] + 1/24 [0 + 0] + 6x^2y^2(-2) + 4xy^5 -3 + 0$



$f(x, y) = 1 + 1/24(-12x^2y^2 - 12xy^3) + cdots$



$= 1 - 1/2(x^2y^2 - xy^3) + cdots$



is this right?





Tried a simpler approach:



$f(xy) = cos(xy)$ let $xy = t$



$f(t) = 1 - frac{t^2}{2} + frac{t^4}{4} - frac{t^6}{6}$



$f(x, y) = 1 - frac{x^2y^2}{2} + frac{x^4y^4}{4} + cdots$



4th order polynomial is



$p_4(x) = 1 - frac{x^2y^2}{2} + frac{x^4y^4}{2}$










share|cite|improve this question
























  • No. Note that from symmetry, $f_{xyyy}(0,0) = f_{yxxx}(0,0)$, so one of your evaluations there is wrong.
    – eyeballfrog
    Nov 16 at 1:43












  • what about the updated answer?
    – Tinler
    Nov 16 at 2:08










  • Using the simpler approach $f(t)=1-frac{t^2}{2}+frac{t^4}{color{red}{24}}+Oleft(t^6right)$
    – Claude Leibovici
    Nov 16 at 5:52












  • what does the O mean, could I leave the answer as $1 - frac{x^2y^2}{2} + frac{x^2y^2}{24}$
    – Tinler
    Nov 16 at 6:00















up vote
2
down vote

favorite












Give the forth order taylor polynomial for the function $f(x, y) = cos(xy)$ around the point $(x, y) = (0,0)$



$f(x, y) = cos(x, y)|_{0,0} = 1$



$f_{x}(x, y) = -xsin(xy)|_{0,0} = 0$



$f_{y}(x, y) = -xsin(x, y)|_{0,0} = 0$



$f_{xx}(x, y) = -x^2cos(x, y)|_{0,0} = 0$



$f_{yy}(x, y) = -x^2cos(x, y)|_{0,0} = 0$



$f_{xy} = -[y^2cos(xy) + sin(xy)]|_{0,0} = 0$



$f_{xxx} = y^3(sin(x, y))|_{0,0} = 0$



$f_{xxy} = [-y^3sin(xy) + 2ycos(xy)]|_{0,0} = 0$



$f_{xyy} = [-y^3sin(xy) + 2ycos(xy) + cos(xy)]|_{0,0} = 0$



$f_{xxxx} = y^4cos(x, y)|_{0,0} = 0$



$f_{yyyy} = x^4cos(x, y)|_{0,0} = 0$



$f_{xxxy} = [y^4cos(x, y) + 3y^2sin(xy)]|_{0,0} = 0$



$f_{xxyy} = [-(y^4cos(xy) + 3y^2sin(xy))]|_{0,0} = -2$



$f_{xyyy} = -[-(y^4cos(xy) + 3y^2sin(xy)) + 3[-y^2sin(xy) + cos(xy)]]|_{0,0} = -3$



using the equation



$f(x, y) = 1 + [0 + 0] + 1/2 [0 + 0 + 0] + 1/6 [0 + 0 + 0] + 1/24 [0 + 0] + 6x^2y^2(-2) + 4xy^5 -3 + 0$



$f(x, y) = 1 + 1/24(-12x^2y^2 - 12xy^3) + cdots$



$= 1 - 1/2(x^2y^2 - xy^3) + cdots$



is this right?





Tried a simpler approach:



$f(xy) = cos(xy)$ let $xy = t$



$f(t) = 1 - frac{t^2}{2} + frac{t^4}{4} - frac{t^6}{6}$



$f(x, y) = 1 - frac{x^2y^2}{2} + frac{x^4y^4}{4} + cdots$



4th order polynomial is



$p_4(x) = 1 - frac{x^2y^2}{2} + frac{x^4y^4}{2}$










share|cite|improve this question
























  • No. Note that from symmetry, $f_{xyyy}(0,0) = f_{yxxx}(0,0)$, so one of your evaluations there is wrong.
    – eyeballfrog
    Nov 16 at 1:43












  • what about the updated answer?
    – Tinler
    Nov 16 at 2:08










  • Using the simpler approach $f(t)=1-frac{t^2}{2}+frac{t^4}{color{red}{24}}+Oleft(t^6right)$
    – Claude Leibovici
    Nov 16 at 5:52












  • what does the O mean, could I leave the answer as $1 - frac{x^2y^2}{2} + frac{x^2y^2}{24}$
    – Tinler
    Nov 16 at 6:00













up vote
2
down vote

favorite









up vote
2
down vote

favorite











Give the forth order taylor polynomial for the function $f(x, y) = cos(xy)$ around the point $(x, y) = (0,0)$



$f(x, y) = cos(x, y)|_{0,0} = 1$



$f_{x}(x, y) = -xsin(xy)|_{0,0} = 0$



$f_{y}(x, y) = -xsin(x, y)|_{0,0} = 0$



$f_{xx}(x, y) = -x^2cos(x, y)|_{0,0} = 0$



$f_{yy}(x, y) = -x^2cos(x, y)|_{0,0} = 0$



$f_{xy} = -[y^2cos(xy) + sin(xy)]|_{0,0} = 0$



$f_{xxx} = y^3(sin(x, y))|_{0,0} = 0$



$f_{xxy} = [-y^3sin(xy) + 2ycos(xy)]|_{0,0} = 0$



$f_{xyy} = [-y^3sin(xy) + 2ycos(xy) + cos(xy)]|_{0,0} = 0$



$f_{xxxx} = y^4cos(x, y)|_{0,0} = 0$



$f_{yyyy} = x^4cos(x, y)|_{0,0} = 0$



$f_{xxxy} = [y^4cos(x, y) + 3y^2sin(xy)]|_{0,0} = 0$



$f_{xxyy} = [-(y^4cos(xy) + 3y^2sin(xy))]|_{0,0} = -2$



$f_{xyyy} = -[-(y^4cos(xy) + 3y^2sin(xy)) + 3[-y^2sin(xy) + cos(xy)]]|_{0,0} = -3$



using the equation



$f(x, y) = 1 + [0 + 0] + 1/2 [0 + 0 + 0] + 1/6 [0 + 0 + 0] + 1/24 [0 + 0] + 6x^2y^2(-2) + 4xy^5 -3 + 0$



$f(x, y) = 1 + 1/24(-12x^2y^2 - 12xy^3) + cdots$



$= 1 - 1/2(x^2y^2 - xy^3) + cdots$



is this right?





Tried a simpler approach:



$f(xy) = cos(xy)$ let $xy = t$



$f(t) = 1 - frac{t^2}{2} + frac{t^4}{4} - frac{t^6}{6}$



$f(x, y) = 1 - frac{x^2y^2}{2} + frac{x^4y^4}{4} + cdots$



4th order polynomial is



$p_4(x) = 1 - frac{x^2y^2}{2} + frac{x^4y^4}{2}$










share|cite|improve this question















Give the forth order taylor polynomial for the function $f(x, y) = cos(xy)$ around the point $(x, y) = (0,0)$



$f(x, y) = cos(x, y)|_{0,0} = 1$



$f_{x}(x, y) = -xsin(xy)|_{0,0} = 0$



$f_{y}(x, y) = -xsin(x, y)|_{0,0} = 0$



$f_{xx}(x, y) = -x^2cos(x, y)|_{0,0} = 0$



$f_{yy}(x, y) = -x^2cos(x, y)|_{0,0} = 0$



$f_{xy} = -[y^2cos(xy) + sin(xy)]|_{0,0} = 0$



$f_{xxx} = y^3(sin(x, y))|_{0,0} = 0$



$f_{xxy} = [-y^3sin(xy) + 2ycos(xy)]|_{0,0} = 0$



$f_{xyy} = [-y^3sin(xy) + 2ycos(xy) + cos(xy)]|_{0,0} = 0$



$f_{xxxx} = y^4cos(x, y)|_{0,0} = 0$



$f_{yyyy} = x^4cos(x, y)|_{0,0} = 0$



$f_{xxxy} = [y^4cos(x, y) + 3y^2sin(xy)]|_{0,0} = 0$



$f_{xxyy} = [-(y^4cos(xy) + 3y^2sin(xy))]|_{0,0} = -2$



$f_{xyyy} = -[-(y^4cos(xy) + 3y^2sin(xy)) + 3[-y^2sin(xy) + cos(xy)]]|_{0,0} = -3$



using the equation



$f(x, y) = 1 + [0 + 0] + 1/2 [0 + 0 + 0] + 1/6 [0 + 0 + 0] + 1/24 [0 + 0] + 6x^2y^2(-2) + 4xy^5 -3 + 0$



$f(x, y) = 1 + 1/24(-12x^2y^2 - 12xy^3) + cdots$



$= 1 - 1/2(x^2y^2 - xy^3) + cdots$



is this right?





Tried a simpler approach:



$f(xy) = cos(xy)$ let $xy = t$



$f(t) = 1 - frac{t^2}{2} + frac{t^4}{4} - frac{t^6}{6}$



$f(x, y) = 1 - frac{x^2y^2}{2} + frac{x^4y^4}{4} + cdots$



4th order polynomial is



$p_4(x) = 1 - frac{x^2y^2}{2} + frac{x^4y^4}{2}$







multivariable-calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 16 at 2:08

























asked Nov 16 at 0:41









Tinler

517311




517311












  • No. Note that from symmetry, $f_{xyyy}(0,0) = f_{yxxx}(0,0)$, so one of your evaluations there is wrong.
    – eyeballfrog
    Nov 16 at 1:43












  • what about the updated answer?
    – Tinler
    Nov 16 at 2:08










  • Using the simpler approach $f(t)=1-frac{t^2}{2}+frac{t^4}{color{red}{24}}+Oleft(t^6right)$
    – Claude Leibovici
    Nov 16 at 5:52












  • what does the O mean, could I leave the answer as $1 - frac{x^2y^2}{2} + frac{x^2y^2}{24}$
    – Tinler
    Nov 16 at 6:00


















  • No. Note that from symmetry, $f_{xyyy}(0,0) = f_{yxxx}(0,0)$, so one of your evaluations there is wrong.
    – eyeballfrog
    Nov 16 at 1:43












  • what about the updated answer?
    – Tinler
    Nov 16 at 2:08










  • Using the simpler approach $f(t)=1-frac{t^2}{2}+frac{t^4}{color{red}{24}}+Oleft(t^6right)$
    – Claude Leibovici
    Nov 16 at 5:52












  • what does the O mean, could I leave the answer as $1 - frac{x^2y^2}{2} + frac{x^2y^2}{24}$
    – Tinler
    Nov 16 at 6:00
















No. Note that from symmetry, $f_{xyyy}(0,0) = f_{yxxx}(0,0)$, so one of your evaluations there is wrong.
– eyeballfrog
Nov 16 at 1:43






No. Note that from symmetry, $f_{xyyy}(0,0) = f_{yxxx}(0,0)$, so one of your evaluations there is wrong.
– eyeballfrog
Nov 16 at 1:43














what about the updated answer?
– Tinler
Nov 16 at 2:08




what about the updated answer?
– Tinler
Nov 16 at 2:08












Using the simpler approach $f(t)=1-frac{t^2}{2}+frac{t^4}{color{red}{24}}+Oleft(t^6right)$
– Claude Leibovici
Nov 16 at 5:52






Using the simpler approach $f(t)=1-frac{t^2}{2}+frac{t^4}{color{red}{24}}+Oleft(t^6right)$
– Claude Leibovici
Nov 16 at 5:52














what does the O mean, could I leave the answer as $1 - frac{x^2y^2}{2} + frac{x^2y^2}{24}$
– Tinler
Nov 16 at 6:00




what does the O mean, could I leave the answer as $1 - frac{x^2y^2}{2} + frac{x^2y^2}{24}$
– Tinler
Nov 16 at 6:00















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000557%2fgive-the-forth-order-taylor-polynomial-for-the-function-fx-y-cosxy-arou%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000557%2fgive-the-forth-order-taylor-polynomial-for-the-function-fx-y-cosxy-arou%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Probability when a professor distributes a quiz and homework assignment to a class of n students.

Aardman Animations

Are they similar matrix