Let $L_{n} = {x in Sigma^* | x = ywz, w^R = w, |w| geq n, |y| = |z| }$ Generate a cfg of $L_n$











up vote
1
down vote

favorite












Let $L_{n} = {x in Sigma^* | x = ywz, w^R = w, |w| geq n, |y| = |z| }$



Generate a cfg of $L_n$



For n = 1, 2, 3





Informally, x is in $L_n$ means
some palindrome of at least length n is a substring of x that occurs
exactly at the midpoint of x.



for $n = 1$



$S to 0S0 | 1S1 | 0S1 | 1S0|0 | 1 | 00 | 11$



for $n = 2$



$S to 0S0 | 1S1 | 0S1 | 1S0 | 0A0 | 1A1$



$A to 0 | 1 | epsilon$



for $n = 3$



$S to 0S0 | 1S1 | 0S1 | 1S0 | 0A0 | 1A1$



$A to 0 | 1 | 00 | 11 | epsilon$



would this be right?



Say I changed it to $|y| > |z|$ or $|y| < |z|$ how would this differ?










share|cite|improve this question




























    up vote
    1
    down vote

    favorite












    Let $L_{n} = {x in Sigma^* | x = ywz, w^R = w, |w| geq n, |y| = |z| }$



    Generate a cfg of $L_n$



    For n = 1, 2, 3





    Informally, x is in $L_n$ means
    some palindrome of at least length n is a substring of x that occurs
    exactly at the midpoint of x.



    for $n = 1$



    $S to 0S0 | 1S1 | 0S1 | 1S0|0 | 1 | 00 | 11$



    for $n = 2$



    $S to 0S0 | 1S1 | 0S1 | 1S0 | 0A0 | 1A1$



    $A to 0 | 1 | epsilon$



    for $n = 3$



    $S to 0S0 | 1S1 | 0S1 | 1S0 | 0A0 | 1A1$



    $A to 0 | 1 | 00 | 11 | epsilon$



    would this be right?



    Say I changed it to $|y| > |z|$ or $|y| < |z|$ how would this differ?










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Let $L_{n} = {x in Sigma^* | x = ywz, w^R = w, |w| geq n, |y| = |z| }$



      Generate a cfg of $L_n$



      For n = 1, 2, 3





      Informally, x is in $L_n$ means
      some palindrome of at least length n is a substring of x that occurs
      exactly at the midpoint of x.



      for $n = 1$



      $S to 0S0 | 1S1 | 0S1 | 1S0|0 | 1 | 00 | 11$



      for $n = 2$



      $S to 0S0 | 1S1 | 0S1 | 1S0 | 0A0 | 1A1$



      $A to 0 | 1 | epsilon$



      for $n = 3$



      $S to 0S0 | 1S1 | 0S1 | 1S0 | 0A0 | 1A1$



      $A to 0 | 1 | 00 | 11 | epsilon$



      would this be right?



      Say I changed it to $|y| > |z|$ or $|y| < |z|$ how would this differ?










      share|cite|improve this question















      Let $L_{n} = {x in Sigma^* | x = ywz, w^R = w, |w| geq n, |y| = |z| }$



      Generate a cfg of $L_n$



      For n = 1, 2, 3





      Informally, x is in $L_n$ means
      some palindrome of at least length n is a substring of x that occurs
      exactly at the midpoint of x.



      for $n = 1$



      $S to 0S0 | 1S1 | 0S1 | 1S0|0 | 1 | 00 | 11$



      for $n = 2$



      $S to 0S0 | 1S1 | 0S1 | 1S0 | 0A0 | 1A1$



      $A to 0 | 1 | epsilon$



      for $n = 3$



      $S to 0S0 | 1S1 | 0S1 | 1S0 | 0A0 | 1A1$



      $A to 0 | 1 | 00 | 11 | epsilon$



      would this be right?



      Say I changed it to $|y| > |z|$ or $|y| < |z|$ how would this differ?







      formal-languages context-free-grammar






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 16 at 1:27









      Joey Kilpatrick

      1,163121




      1,163121










      asked Nov 12 at 22:00









      Tree Garen

      35019




      35019






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote



          accepted










          Everything here is assuming $Sigma={0,1}$.



          Your solution for $n=1$ and $n=2$ are correct, but $n=3$ is not quite right because it allows $11$ and $00$ which are not in $L_3$. To fix this, simply remove $epsilon$ from the rule for $A$. The following solution, while verbose, scales well for any $n$.



          The rule $A_i$ will be the rule that produces every palindrome of length $i$ or $i-1$. For $ige3$, $$
          A_ilongrightarrow 0A_{i-2}0text{ }|text{ }1A_{i-2}1text{ }|text{ }0A_{i-3}0text{ }|text{ }1A_{i-3}1
          $$

          Let
          $$
          A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
          A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
          A_0longrightarrow epsilon
          $$



          Then any $L_n$ can be produced by the rules for $A_0, A_1, ..., A_n, A_{n+1}$ and starting symbol $S$ with rule$$
          Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_{n+1}
          $$



          For $n=1$, we can write,
          $$
          Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_2 \
          A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
          A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
          A_0longrightarrow epsilon
          $$



          For $n=2$, we can write,
          $$
          Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_3 \
          A_3longrightarrow 0A_{1}0text{ }|text{ }1A_{1}1text{ }|text{ }0A_{0}0text{ }|text{ }1A_{0}1 \
          A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
          A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
          A_0longrightarrow epsilon
          $$



          For $n=3$, we can write,
          $$
          Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_4 \
          A_4longrightarrow 0A_{2}0text{ }|text{ }1A_{2}1text{ }|text{ }0A_{1}0text{ }|text{ }1A_{1}1 \
          A_3longrightarrow 0A_{1}0text{ }|text{ }1A_{1}1text{ }|text{ }0A_{0}0text{ }|text{ }1A_{0}1 \
          A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
          A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
          A_0longrightarrow epsilon
          $$



          And so on.



          If $|y|>|z|$, then we just add the rule $$
          R longrightarrow 0Rtext{ }|text{ }1Rtext{ }|text{ }0Stext{ }|text{ }1S
          $$

          and let $R$ be the starting symbol.



          If $|y|<|z|$, then we just add the rule $$
          R longrightarrow R0text{ }|text{ }R1text{ }|text{ }S0text{ }|text{ }S1
          $$

          and let $R$ be the starting symbol.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995951%2flet-l-n-x-in-sigma-x-ywz-wr-w-w-geq-n-y-z-gene%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote



            accepted










            Everything here is assuming $Sigma={0,1}$.



            Your solution for $n=1$ and $n=2$ are correct, but $n=3$ is not quite right because it allows $11$ and $00$ which are not in $L_3$. To fix this, simply remove $epsilon$ from the rule for $A$. The following solution, while verbose, scales well for any $n$.



            The rule $A_i$ will be the rule that produces every palindrome of length $i$ or $i-1$. For $ige3$, $$
            A_ilongrightarrow 0A_{i-2}0text{ }|text{ }1A_{i-2}1text{ }|text{ }0A_{i-3}0text{ }|text{ }1A_{i-3}1
            $$

            Let
            $$
            A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
            A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
            A_0longrightarrow epsilon
            $$



            Then any $L_n$ can be produced by the rules for $A_0, A_1, ..., A_n, A_{n+1}$ and starting symbol $S$ with rule$$
            Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_{n+1}
            $$



            For $n=1$, we can write,
            $$
            Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_2 \
            A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
            A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
            A_0longrightarrow epsilon
            $$



            For $n=2$, we can write,
            $$
            Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_3 \
            A_3longrightarrow 0A_{1}0text{ }|text{ }1A_{1}1text{ }|text{ }0A_{0}0text{ }|text{ }1A_{0}1 \
            A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
            A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
            A_0longrightarrow epsilon
            $$



            For $n=3$, we can write,
            $$
            Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_4 \
            A_4longrightarrow 0A_{2}0text{ }|text{ }1A_{2}1text{ }|text{ }0A_{1}0text{ }|text{ }1A_{1}1 \
            A_3longrightarrow 0A_{1}0text{ }|text{ }1A_{1}1text{ }|text{ }0A_{0}0text{ }|text{ }1A_{0}1 \
            A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
            A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
            A_0longrightarrow epsilon
            $$



            And so on.



            If $|y|>|z|$, then we just add the rule $$
            R longrightarrow 0Rtext{ }|text{ }1Rtext{ }|text{ }0Stext{ }|text{ }1S
            $$

            and let $R$ be the starting symbol.



            If $|y|<|z|$, then we just add the rule $$
            R longrightarrow R0text{ }|text{ }R1text{ }|text{ }S0text{ }|text{ }S1
            $$

            and let $R$ be the starting symbol.






            share|cite|improve this answer

























              up vote
              0
              down vote



              accepted










              Everything here is assuming $Sigma={0,1}$.



              Your solution for $n=1$ and $n=2$ are correct, but $n=3$ is not quite right because it allows $11$ and $00$ which are not in $L_3$. To fix this, simply remove $epsilon$ from the rule for $A$. The following solution, while verbose, scales well for any $n$.



              The rule $A_i$ will be the rule that produces every palindrome of length $i$ or $i-1$. For $ige3$, $$
              A_ilongrightarrow 0A_{i-2}0text{ }|text{ }1A_{i-2}1text{ }|text{ }0A_{i-3}0text{ }|text{ }1A_{i-3}1
              $$

              Let
              $$
              A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
              A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
              A_0longrightarrow epsilon
              $$



              Then any $L_n$ can be produced by the rules for $A_0, A_1, ..., A_n, A_{n+1}$ and starting symbol $S$ with rule$$
              Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_{n+1}
              $$



              For $n=1$, we can write,
              $$
              Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_2 \
              A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
              A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
              A_0longrightarrow epsilon
              $$



              For $n=2$, we can write,
              $$
              Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_3 \
              A_3longrightarrow 0A_{1}0text{ }|text{ }1A_{1}1text{ }|text{ }0A_{0}0text{ }|text{ }1A_{0}1 \
              A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
              A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
              A_0longrightarrow epsilon
              $$



              For $n=3$, we can write,
              $$
              Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_4 \
              A_4longrightarrow 0A_{2}0text{ }|text{ }1A_{2}1text{ }|text{ }0A_{1}0text{ }|text{ }1A_{1}1 \
              A_3longrightarrow 0A_{1}0text{ }|text{ }1A_{1}1text{ }|text{ }0A_{0}0text{ }|text{ }1A_{0}1 \
              A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
              A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
              A_0longrightarrow epsilon
              $$



              And so on.



              If $|y|>|z|$, then we just add the rule $$
              R longrightarrow 0Rtext{ }|text{ }1Rtext{ }|text{ }0Stext{ }|text{ }1S
              $$

              and let $R$ be the starting symbol.



              If $|y|<|z|$, then we just add the rule $$
              R longrightarrow R0text{ }|text{ }R1text{ }|text{ }S0text{ }|text{ }S1
              $$

              and let $R$ be the starting symbol.






              share|cite|improve this answer























                up vote
                0
                down vote



                accepted







                up vote
                0
                down vote



                accepted






                Everything here is assuming $Sigma={0,1}$.



                Your solution for $n=1$ and $n=2$ are correct, but $n=3$ is not quite right because it allows $11$ and $00$ which are not in $L_3$. To fix this, simply remove $epsilon$ from the rule for $A$. The following solution, while verbose, scales well for any $n$.



                The rule $A_i$ will be the rule that produces every palindrome of length $i$ or $i-1$. For $ige3$, $$
                A_ilongrightarrow 0A_{i-2}0text{ }|text{ }1A_{i-2}1text{ }|text{ }0A_{i-3}0text{ }|text{ }1A_{i-3}1
                $$

                Let
                $$
                A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
                A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
                A_0longrightarrow epsilon
                $$



                Then any $L_n$ can be produced by the rules for $A_0, A_1, ..., A_n, A_{n+1}$ and starting symbol $S$ with rule$$
                Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_{n+1}
                $$



                For $n=1$, we can write,
                $$
                Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_2 \
                A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
                A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
                A_0longrightarrow epsilon
                $$



                For $n=2$, we can write,
                $$
                Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_3 \
                A_3longrightarrow 0A_{1}0text{ }|text{ }1A_{1}1text{ }|text{ }0A_{0}0text{ }|text{ }1A_{0}1 \
                A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
                A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
                A_0longrightarrow epsilon
                $$



                For $n=3$, we can write,
                $$
                Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_4 \
                A_4longrightarrow 0A_{2}0text{ }|text{ }1A_{2}1text{ }|text{ }0A_{1}0text{ }|text{ }1A_{1}1 \
                A_3longrightarrow 0A_{1}0text{ }|text{ }1A_{1}1text{ }|text{ }0A_{0}0text{ }|text{ }1A_{0}1 \
                A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
                A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
                A_0longrightarrow epsilon
                $$



                And so on.



                If $|y|>|z|$, then we just add the rule $$
                R longrightarrow 0Rtext{ }|text{ }1Rtext{ }|text{ }0Stext{ }|text{ }1S
                $$

                and let $R$ be the starting symbol.



                If $|y|<|z|$, then we just add the rule $$
                R longrightarrow R0text{ }|text{ }R1text{ }|text{ }S0text{ }|text{ }S1
                $$

                and let $R$ be the starting symbol.






                share|cite|improve this answer












                Everything here is assuming $Sigma={0,1}$.



                Your solution for $n=1$ and $n=2$ are correct, but $n=3$ is not quite right because it allows $11$ and $00$ which are not in $L_3$. To fix this, simply remove $epsilon$ from the rule for $A$. The following solution, while verbose, scales well for any $n$.



                The rule $A_i$ will be the rule that produces every palindrome of length $i$ or $i-1$. For $ige3$, $$
                A_ilongrightarrow 0A_{i-2}0text{ }|text{ }1A_{i-2}1text{ }|text{ }0A_{i-3}0text{ }|text{ }1A_{i-3}1
                $$

                Let
                $$
                A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
                A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
                A_0longrightarrow epsilon
                $$



                Then any $L_n$ can be produced by the rules for $A_0, A_1, ..., A_n, A_{n+1}$ and starting symbol $S$ with rule$$
                Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_{n+1}
                $$



                For $n=1$, we can write,
                $$
                Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_2 \
                A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
                A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
                A_0longrightarrow epsilon
                $$



                For $n=2$, we can write,
                $$
                Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_3 \
                A_3longrightarrow 0A_{1}0text{ }|text{ }1A_{1}1text{ }|text{ }0A_{0}0text{ }|text{ }1A_{0}1 \
                A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
                A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
                A_0longrightarrow epsilon
                $$



                For $n=3$, we can write,
                $$
                Slongrightarrow 0S0text{ }|text{ } 0S1text{ }|text{ }1S0text{ }|text{ }1S1text{ }|text{ }A_4 \
                A_4longrightarrow 0A_{2}0text{ }|text{ }1A_{2}1text{ }|text{ }0A_{1}0text{ }|text{ }1A_{1}1 \
                A_3longrightarrow 0A_{1}0text{ }|text{ }1A_{1}1text{ }|text{ }0A_{0}0text{ }|text{ }1A_{0}1 \
                A_2longrightarrow 0text{ }|text{ }1text{ }|text{ }00text{ }|text{ }11 \
                A_1longrightarrow epsilontext{ }|text{ }0text{ }|text{ }1 \
                A_0longrightarrow epsilon
                $$



                And so on.



                If $|y|>|z|$, then we just add the rule $$
                R longrightarrow 0Rtext{ }|text{ }1Rtext{ }|text{ }0Stext{ }|text{ }1S
                $$

                and let $R$ be the starting symbol.



                If $|y|<|z|$, then we just add the rule $$
                R longrightarrow R0text{ }|text{ }R1text{ }|text{ }S0text{ }|text{ }S1
                $$

                and let $R$ be the starting symbol.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 16 at 1:00









                Joey Kilpatrick

                1,163121




                1,163121






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995951%2flet-l-n-x-in-sigma-x-ywz-wr-w-w-geq-n-y-z-gene%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Probability when a professor distributes a quiz and homework assignment to a class of n students.

                    Aardman Animations

                    Are they similar matrix