Questions related to the Riemann Xi function $xi(s)$ and Jacobi theta functions $vartheta_3(0,q)$











up vote
0
down vote

favorite












This question assumes the following definitions.





(1) $quadpsi(x)=sumlimits_{n=1}^infty e^{-pi,n^2,x}=frac{1}{2} left(vartheta_3left(0,e^{-pi,x}right)-1right)$



(2) $quad f(x)=sumlimits_{n=1}^infty e^{-frac{pi,n^2}{x^2}}=frac{1}{2}left(vartheta_3left(0,e^{-frac{pi}{x^2}}right)-1right)$



(3) $quad M(K)=sumlimits_{n=1}^Kmu(k)qquadtext{(Mertens function)}$





Riemann used the Jacobi theta functional equation in the form illustrated in (4) below to prove the Riemann Xi functional equation $xi(s)=xi(1-s)$ (e.g. see section 1.7 of "Riemann's Zeta Function" by H. M. Edwards). The functional equation illustrated in (4) below was used to derive the two equivalent formulas for $xi(s)$ illustrated in (5) and (6) below which I believe are globally convergent. Note both of these formulas are unchanged by the substitution $s=1-s$.





(4) $quadfrac{2,psi(x)+1}{2,psi(1/x)+1}=frac{1}{sqrt{x}}$



(5) $quadxi(s)=frac{1}{2}-frac{s,(1-s)}{2}sumlimits_{n=1}^inftyleft(left(sqrt{pi},nright)^{-s},Gammaleft(frac{s}{2},pi,n^2right)+left(sqrt{pi},nright)^{-(1-s)},Gammaleft(frac{1-s}{2},pi,n^2right)right)$



(6) $quadxi(s)=frac{1}{2}-frac{s,(1-s)}{2}sumlimits_{n=1}^inftyleft(E_{frac{1+s}{2}}left(pi,n^2right)+E_{frac{1+(1-s)}{2}}left(pi,n^2right)right)$





The relationship between $f(x)$ illustrated in (2) above and the Riemann Xi function $xi(s)$ is illustrated in (7) below. The Jacobi theta functional equation related to $f(x)$ is illustrated in (8) below, but this functional equation was not used in the derivation of formula (7) below.





(7) $quadxi(s)=s,(s-1)intlimits_0^infty f(x),x^{-s-1},dx=pi^{-frac{s}{2}}(s-1,)Gammaleft(frac{s}{2}+1right)sumlimits_{n=1}^inftyfrac{1}{n^s},,quadRe(s)>1$



(8) $quadfrac{2,f(x)+1}{2,fleft(frac{1}{x}right)+1}=x$





Since the formulas for $xi(s)$ derived from $psi(x)$ are valid for all s, whereas the formula for $xi(s)$ derived from $f(x)$ is only valid for $Re(s)>1$, it would seem that $psi(x)$ is perhaps a more important function than $f(x)$. Nevertheless, I've found $f(x)$ to be a very interesting function primarily because it obeys the relationships illustrated in (9) and (10) below. Below I indicated the two relationships are valid for $x>0$, but I actually think they're valid for a subset of $Re(x)>0$ (possibly $|Im(x)|<|Re(x)|$).



(9) $quad e^{-frac{pi,n^2}{x^2}}=frac{x}{n}sum_{k=1}^Kfrac{mu(k)}{k},fleft(frac{n,k}{x}right),quad x>0land M(K)=0land Ktoinfty$



(10) $quad f(x)=xsumlimits_{n=1}^inftyfrac{1}{n}sumlimits_{k=1}^Kfrac{mu(k)}{k},fleft(frac{n,k}{x}right),quad x>0land M(K)=0land Ktoinfty$





Relationship (10) above can be written in terms of the Jacobi theta function as follows.





(11) $quadvartheta _3left(0,e^{-pi,x^2}right)-1=frac{1}{x}sumlimits_{n=1}^inftyfrac{1}{n}sumlimits_{k=1}^inftyfrac{mu(k)}{k}left(vartheta_3left(0,e^{-frac{pi}{n^2,k^2,x^2}}right)-1right),quad x>0$



(12) $quadvartheta_3left(0,e^{-frac{pi}{x^2}}right)-1=xsumlimits_{n=1}^inftyfrac{1}{n}sumlimits_{k=1}^{infty}frac{mu(k)}{k}left(vartheta_3left(0,e^{-frac{pi,x^2}{n^2,k^2}}right)-1right),quad x>0$





When evaluated at finite limits formulas (11) and (12) above are conditionally convergent with respect to the inner sum over $k$ and must be evaluated as follows.





(13) $quadvartheta _3left(0,e^{-pi,x^2}right)-1=frac{1}{x}sumlimits_{n=1}^Nfrac{1}{n}sumlimits_{k=1}^Kfrac{mu(k)}{k}left(vartheta_3left(0,e^{-frac{pi}{n^2,k^2,x^2}}right)-1right),\$ $qquadqquadqquadqquadqquadqquadqquadqquadqquadqquad x>0land Ntoinftyland M(K)=0land Ktoinfty$



(14) $quadvartheta_3left(0,e^{-frac{pi}{x^2}}right)-1=xsumlimits_{n=1}^Nfrac{1}{n}sumlimits_{k=1}^Kfrac{mu(k)}{k}left(vartheta_3left(0,e^{-frac{pi,x^2}{n^2,k^2}}right)-1right),\$ $qquadqquadqquadqquadqquadqquadqquadqquadqquadqquad x>0land Ntoinftyland M(K)=0land Ktoinfty$





I've read the functional equation illustrated in (15) below is of considerable importance in mathematics with far-reaching consequences, and I'm wondering if the relationships illustrated in (13) and (14) above are also perhaps of some significance.





(15) $qquadvartheta_3(z,tau)=(-i,tau)^{-frac{1}{2}},e^{frac{z^2}{pi,i,tau}},vartheta_3left(frac{z}{tau},-frac{1}{tau}right)$





Question (1): Are there any other interesting and unique relationships that have been or can be derived related to the Jacobi theta functions $vartheta _3left(0,e^{-pi,x^2}right)$ and $vartheta_3left(0,e^{-frac{pi}{x^2}}right)$? Do these functions play any special role in applications of the Jacobi theta function or related theory such as the theory of modular forms?










share|cite|improve this question
























  • You are making things complicated. $int_1^infty psi(x) (x^{s-1}+x^{-s})dx = ?$
    – reuns
    Nov 16 at 2:32












  • @reuns I evaluated the integral $int_1^{infty }psi (x)left(x^{s/2}+x^{frac{1-s}{2}}right)frac{dx}{x}$. I don't understand how your integral is relevant.
    – Steven Clark
    Nov 20 at 15:12















up vote
0
down vote

favorite












This question assumes the following definitions.





(1) $quadpsi(x)=sumlimits_{n=1}^infty e^{-pi,n^2,x}=frac{1}{2} left(vartheta_3left(0,e^{-pi,x}right)-1right)$



(2) $quad f(x)=sumlimits_{n=1}^infty e^{-frac{pi,n^2}{x^2}}=frac{1}{2}left(vartheta_3left(0,e^{-frac{pi}{x^2}}right)-1right)$



(3) $quad M(K)=sumlimits_{n=1}^Kmu(k)qquadtext{(Mertens function)}$





Riemann used the Jacobi theta functional equation in the form illustrated in (4) below to prove the Riemann Xi functional equation $xi(s)=xi(1-s)$ (e.g. see section 1.7 of "Riemann's Zeta Function" by H. M. Edwards). The functional equation illustrated in (4) below was used to derive the two equivalent formulas for $xi(s)$ illustrated in (5) and (6) below which I believe are globally convergent. Note both of these formulas are unchanged by the substitution $s=1-s$.





(4) $quadfrac{2,psi(x)+1}{2,psi(1/x)+1}=frac{1}{sqrt{x}}$



(5) $quadxi(s)=frac{1}{2}-frac{s,(1-s)}{2}sumlimits_{n=1}^inftyleft(left(sqrt{pi},nright)^{-s},Gammaleft(frac{s}{2},pi,n^2right)+left(sqrt{pi},nright)^{-(1-s)},Gammaleft(frac{1-s}{2},pi,n^2right)right)$



(6) $quadxi(s)=frac{1}{2}-frac{s,(1-s)}{2}sumlimits_{n=1}^inftyleft(E_{frac{1+s}{2}}left(pi,n^2right)+E_{frac{1+(1-s)}{2}}left(pi,n^2right)right)$





The relationship between $f(x)$ illustrated in (2) above and the Riemann Xi function $xi(s)$ is illustrated in (7) below. The Jacobi theta functional equation related to $f(x)$ is illustrated in (8) below, but this functional equation was not used in the derivation of formula (7) below.





(7) $quadxi(s)=s,(s-1)intlimits_0^infty f(x),x^{-s-1},dx=pi^{-frac{s}{2}}(s-1,)Gammaleft(frac{s}{2}+1right)sumlimits_{n=1}^inftyfrac{1}{n^s},,quadRe(s)>1$



(8) $quadfrac{2,f(x)+1}{2,fleft(frac{1}{x}right)+1}=x$





Since the formulas for $xi(s)$ derived from $psi(x)$ are valid for all s, whereas the formula for $xi(s)$ derived from $f(x)$ is only valid for $Re(s)>1$, it would seem that $psi(x)$ is perhaps a more important function than $f(x)$. Nevertheless, I've found $f(x)$ to be a very interesting function primarily because it obeys the relationships illustrated in (9) and (10) below. Below I indicated the two relationships are valid for $x>0$, but I actually think they're valid for a subset of $Re(x)>0$ (possibly $|Im(x)|<|Re(x)|$).



(9) $quad e^{-frac{pi,n^2}{x^2}}=frac{x}{n}sum_{k=1}^Kfrac{mu(k)}{k},fleft(frac{n,k}{x}right),quad x>0land M(K)=0land Ktoinfty$



(10) $quad f(x)=xsumlimits_{n=1}^inftyfrac{1}{n}sumlimits_{k=1}^Kfrac{mu(k)}{k},fleft(frac{n,k}{x}right),quad x>0land M(K)=0land Ktoinfty$





Relationship (10) above can be written in terms of the Jacobi theta function as follows.





(11) $quadvartheta _3left(0,e^{-pi,x^2}right)-1=frac{1}{x}sumlimits_{n=1}^inftyfrac{1}{n}sumlimits_{k=1}^inftyfrac{mu(k)}{k}left(vartheta_3left(0,e^{-frac{pi}{n^2,k^2,x^2}}right)-1right),quad x>0$



(12) $quadvartheta_3left(0,e^{-frac{pi}{x^2}}right)-1=xsumlimits_{n=1}^inftyfrac{1}{n}sumlimits_{k=1}^{infty}frac{mu(k)}{k}left(vartheta_3left(0,e^{-frac{pi,x^2}{n^2,k^2}}right)-1right),quad x>0$





When evaluated at finite limits formulas (11) and (12) above are conditionally convergent with respect to the inner sum over $k$ and must be evaluated as follows.





(13) $quadvartheta _3left(0,e^{-pi,x^2}right)-1=frac{1}{x}sumlimits_{n=1}^Nfrac{1}{n}sumlimits_{k=1}^Kfrac{mu(k)}{k}left(vartheta_3left(0,e^{-frac{pi}{n^2,k^2,x^2}}right)-1right),\$ $qquadqquadqquadqquadqquadqquadqquadqquadqquadqquad x>0land Ntoinftyland M(K)=0land Ktoinfty$



(14) $quadvartheta_3left(0,e^{-frac{pi}{x^2}}right)-1=xsumlimits_{n=1}^Nfrac{1}{n}sumlimits_{k=1}^Kfrac{mu(k)}{k}left(vartheta_3left(0,e^{-frac{pi,x^2}{n^2,k^2}}right)-1right),\$ $qquadqquadqquadqquadqquadqquadqquadqquadqquadqquad x>0land Ntoinftyland M(K)=0land Ktoinfty$





I've read the functional equation illustrated in (15) below is of considerable importance in mathematics with far-reaching consequences, and I'm wondering if the relationships illustrated in (13) and (14) above are also perhaps of some significance.





(15) $qquadvartheta_3(z,tau)=(-i,tau)^{-frac{1}{2}},e^{frac{z^2}{pi,i,tau}},vartheta_3left(frac{z}{tau},-frac{1}{tau}right)$





Question (1): Are there any other interesting and unique relationships that have been or can be derived related to the Jacobi theta functions $vartheta _3left(0,e^{-pi,x^2}right)$ and $vartheta_3left(0,e^{-frac{pi}{x^2}}right)$? Do these functions play any special role in applications of the Jacobi theta function or related theory such as the theory of modular forms?










share|cite|improve this question
























  • You are making things complicated. $int_1^infty psi(x) (x^{s-1}+x^{-s})dx = ?$
    – reuns
    Nov 16 at 2:32












  • @reuns I evaluated the integral $int_1^{infty }psi (x)left(x^{s/2}+x^{frac{1-s}{2}}right)frac{dx}{x}$. I don't understand how your integral is relevant.
    – Steven Clark
    Nov 20 at 15:12













up vote
0
down vote

favorite









up vote
0
down vote

favorite











This question assumes the following definitions.





(1) $quadpsi(x)=sumlimits_{n=1}^infty e^{-pi,n^2,x}=frac{1}{2} left(vartheta_3left(0,e^{-pi,x}right)-1right)$



(2) $quad f(x)=sumlimits_{n=1}^infty e^{-frac{pi,n^2}{x^2}}=frac{1}{2}left(vartheta_3left(0,e^{-frac{pi}{x^2}}right)-1right)$



(3) $quad M(K)=sumlimits_{n=1}^Kmu(k)qquadtext{(Mertens function)}$





Riemann used the Jacobi theta functional equation in the form illustrated in (4) below to prove the Riemann Xi functional equation $xi(s)=xi(1-s)$ (e.g. see section 1.7 of "Riemann's Zeta Function" by H. M. Edwards). The functional equation illustrated in (4) below was used to derive the two equivalent formulas for $xi(s)$ illustrated in (5) and (6) below which I believe are globally convergent. Note both of these formulas are unchanged by the substitution $s=1-s$.





(4) $quadfrac{2,psi(x)+1}{2,psi(1/x)+1}=frac{1}{sqrt{x}}$



(5) $quadxi(s)=frac{1}{2}-frac{s,(1-s)}{2}sumlimits_{n=1}^inftyleft(left(sqrt{pi},nright)^{-s},Gammaleft(frac{s}{2},pi,n^2right)+left(sqrt{pi},nright)^{-(1-s)},Gammaleft(frac{1-s}{2},pi,n^2right)right)$



(6) $quadxi(s)=frac{1}{2}-frac{s,(1-s)}{2}sumlimits_{n=1}^inftyleft(E_{frac{1+s}{2}}left(pi,n^2right)+E_{frac{1+(1-s)}{2}}left(pi,n^2right)right)$





The relationship between $f(x)$ illustrated in (2) above and the Riemann Xi function $xi(s)$ is illustrated in (7) below. The Jacobi theta functional equation related to $f(x)$ is illustrated in (8) below, but this functional equation was not used in the derivation of formula (7) below.





(7) $quadxi(s)=s,(s-1)intlimits_0^infty f(x),x^{-s-1},dx=pi^{-frac{s}{2}}(s-1,)Gammaleft(frac{s}{2}+1right)sumlimits_{n=1}^inftyfrac{1}{n^s},,quadRe(s)>1$



(8) $quadfrac{2,f(x)+1}{2,fleft(frac{1}{x}right)+1}=x$





Since the formulas for $xi(s)$ derived from $psi(x)$ are valid for all s, whereas the formula for $xi(s)$ derived from $f(x)$ is only valid for $Re(s)>1$, it would seem that $psi(x)$ is perhaps a more important function than $f(x)$. Nevertheless, I've found $f(x)$ to be a very interesting function primarily because it obeys the relationships illustrated in (9) and (10) below. Below I indicated the two relationships are valid for $x>0$, but I actually think they're valid for a subset of $Re(x)>0$ (possibly $|Im(x)|<|Re(x)|$).



(9) $quad e^{-frac{pi,n^2}{x^2}}=frac{x}{n}sum_{k=1}^Kfrac{mu(k)}{k},fleft(frac{n,k}{x}right),quad x>0land M(K)=0land Ktoinfty$



(10) $quad f(x)=xsumlimits_{n=1}^inftyfrac{1}{n}sumlimits_{k=1}^Kfrac{mu(k)}{k},fleft(frac{n,k}{x}right),quad x>0land M(K)=0land Ktoinfty$





Relationship (10) above can be written in terms of the Jacobi theta function as follows.





(11) $quadvartheta _3left(0,e^{-pi,x^2}right)-1=frac{1}{x}sumlimits_{n=1}^inftyfrac{1}{n}sumlimits_{k=1}^inftyfrac{mu(k)}{k}left(vartheta_3left(0,e^{-frac{pi}{n^2,k^2,x^2}}right)-1right),quad x>0$



(12) $quadvartheta_3left(0,e^{-frac{pi}{x^2}}right)-1=xsumlimits_{n=1}^inftyfrac{1}{n}sumlimits_{k=1}^{infty}frac{mu(k)}{k}left(vartheta_3left(0,e^{-frac{pi,x^2}{n^2,k^2}}right)-1right),quad x>0$





When evaluated at finite limits formulas (11) and (12) above are conditionally convergent with respect to the inner sum over $k$ and must be evaluated as follows.





(13) $quadvartheta _3left(0,e^{-pi,x^2}right)-1=frac{1}{x}sumlimits_{n=1}^Nfrac{1}{n}sumlimits_{k=1}^Kfrac{mu(k)}{k}left(vartheta_3left(0,e^{-frac{pi}{n^2,k^2,x^2}}right)-1right),\$ $qquadqquadqquadqquadqquadqquadqquadqquadqquadqquad x>0land Ntoinftyland M(K)=0land Ktoinfty$



(14) $quadvartheta_3left(0,e^{-frac{pi}{x^2}}right)-1=xsumlimits_{n=1}^Nfrac{1}{n}sumlimits_{k=1}^Kfrac{mu(k)}{k}left(vartheta_3left(0,e^{-frac{pi,x^2}{n^2,k^2}}right)-1right),\$ $qquadqquadqquadqquadqquadqquadqquadqquadqquadqquad x>0land Ntoinftyland M(K)=0land Ktoinfty$





I've read the functional equation illustrated in (15) below is of considerable importance in mathematics with far-reaching consequences, and I'm wondering if the relationships illustrated in (13) and (14) above are also perhaps of some significance.





(15) $qquadvartheta_3(z,tau)=(-i,tau)^{-frac{1}{2}},e^{frac{z^2}{pi,i,tau}},vartheta_3left(frac{z}{tau},-frac{1}{tau}right)$





Question (1): Are there any other interesting and unique relationships that have been or can be derived related to the Jacobi theta functions $vartheta _3left(0,e^{-pi,x^2}right)$ and $vartheta_3left(0,e^{-frac{pi}{x^2}}right)$? Do these functions play any special role in applications of the Jacobi theta function or related theory such as the theory of modular forms?










share|cite|improve this question















This question assumes the following definitions.





(1) $quadpsi(x)=sumlimits_{n=1}^infty e^{-pi,n^2,x}=frac{1}{2} left(vartheta_3left(0,e^{-pi,x}right)-1right)$



(2) $quad f(x)=sumlimits_{n=1}^infty e^{-frac{pi,n^2}{x^2}}=frac{1}{2}left(vartheta_3left(0,e^{-frac{pi}{x^2}}right)-1right)$



(3) $quad M(K)=sumlimits_{n=1}^Kmu(k)qquadtext{(Mertens function)}$





Riemann used the Jacobi theta functional equation in the form illustrated in (4) below to prove the Riemann Xi functional equation $xi(s)=xi(1-s)$ (e.g. see section 1.7 of "Riemann's Zeta Function" by H. M. Edwards). The functional equation illustrated in (4) below was used to derive the two equivalent formulas for $xi(s)$ illustrated in (5) and (6) below which I believe are globally convergent. Note both of these formulas are unchanged by the substitution $s=1-s$.





(4) $quadfrac{2,psi(x)+1}{2,psi(1/x)+1}=frac{1}{sqrt{x}}$



(5) $quadxi(s)=frac{1}{2}-frac{s,(1-s)}{2}sumlimits_{n=1}^inftyleft(left(sqrt{pi},nright)^{-s},Gammaleft(frac{s}{2},pi,n^2right)+left(sqrt{pi},nright)^{-(1-s)},Gammaleft(frac{1-s}{2},pi,n^2right)right)$



(6) $quadxi(s)=frac{1}{2}-frac{s,(1-s)}{2}sumlimits_{n=1}^inftyleft(E_{frac{1+s}{2}}left(pi,n^2right)+E_{frac{1+(1-s)}{2}}left(pi,n^2right)right)$





The relationship between $f(x)$ illustrated in (2) above and the Riemann Xi function $xi(s)$ is illustrated in (7) below. The Jacobi theta functional equation related to $f(x)$ is illustrated in (8) below, but this functional equation was not used in the derivation of formula (7) below.





(7) $quadxi(s)=s,(s-1)intlimits_0^infty f(x),x^{-s-1},dx=pi^{-frac{s}{2}}(s-1,)Gammaleft(frac{s}{2}+1right)sumlimits_{n=1}^inftyfrac{1}{n^s},,quadRe(s)>1$



(8) $quadfrac{2,f(x)+1}{2,fleft(frac{1}{x}right)+1}=x$





Since the formulas for $xi(s)$ derived from $psi(x)$ are valid for all s, whereas the formula for $xi(s)$ derived from $f(x)$ is only valid for $Re(s)>1$, it would seem that $psi(x)$ is perhaps a more important function than $f(x)$. Nevertheless, I've found $f(x)$ to be a very interesting function primarily because it obeys the relationships illustrated in (9) and (10) below. Below I indicated the two relationships are valid for $x>0$, but I actually think they're valid for a subset of $Re(x)>0$ (possibly $|Im(x)|<|Re(x)|$).



(9) $quad e^{-frac{pi,n^2}{x^2}}=frac{x}{n}sum_{k=1}^Kfrac{mu(k)}{k},fleft(frac{n,k}{x}right),quad x>0land M(K)=0land Ktoinfty$



(10) $quad f(x)=xsumlimits_{n=1}^inftyfrac{1}{n}sumlimits_{k=1}^Kfrac{mu(k)}{k},fleft(frac{n,k}{x}right),quad x>0land M(K)=0land Ktoinfty$





Relationship (10) above can be written in terms of the Jacobi theta function as follows.





(11) $quadvartheta _3left(0,e^{-pi,x^2}right)-1=frac{1}{x}sumlimits_{n=1}^inftyfrac{1}{n}sumlimits_{k=1}^inftyfrac{mu(k)}{k}left(vartheta_3left(0,e^{-frac{pi}{n^2,k^2,x^2}}right)-1right),quad x>0$



(12) $quadvartheta_3left(0,e^{-frac{pi}{x^2}}right)-1=xsumlimits_{n=1}^inftyfrac{1}{n}sumlimits_{k=1}^{infty}frac{mu(k)}{k}left(vartheta_3left(0,e^{-frac{pi,x^2}{n^2,k^2}}right)-1right),quad x>0$





When evaluated at finite limits formulas (11) and (12) above are conditionally convergent with respect to the inner sum over $k$ and must be evaluated as follows.





(13) $quadvartheta _3left(0,e^{-pi,x^2}right)-1=frac{1}{x}sumlimits_{n=1}^Nfrac{1}{n}sumlimits_{k=1}^Kfrac{mu(k)}{k}left(vartheta_3left(0,e^{-frac{pi}{n^2,k^2,x^2}}right)-1right),\$ $qquadqquadqquadqquadqquadqquadqquadqquadqquadqquad x>0land Ntoinftyland M(K)=0land Ktoinfty$



(14) $quadvartheta_3left(0,e^{-frac{pi}{x^2}}right)-1=xsumlimits_{n=1}^Nfrac{1}{n}sumlimits_{k=1}^Kfrac{mu(k)}{k}left(vartheta_3left(0,e^{-frac{pi,x^2}{n^2,k^2}}right)-1right),\$ $qquadqquadqquadqquadqquadqquadqquadqquadqquadqquad x>0land Ntoinftyland M(K)=0land Ktoinfty$





I've read the functional equation illustrated in (15) below is of considerable importance in mathematics with far-reaching consequences, and I'm wondering if the relationships illustrated in (13) and (14) above are also perhaps of some significance.





(15) $qquadvartheta_3(z,tau)=(-i,tau)^{-frac{1}{2}},e^{frac{z^2}{pi,i,tau}},vartheta_3left(frac{z}{tau},-frac{1}{tau}right)$





Question (1): Are there any other interesting and unique relationships that have been or can be derived related to the Jacobi theta functions $vartheta _3left(0,e^{-pi,x^2}right)$ and $vartheta_3left(0,e^{-frac{pi}{x^2}}right)$? Do these functions play any special role in applications of the Jacobi theta function or related theory such as the theory of modular forms?







number-theory riemann-zeta elliptic-functions mobius-function mellin-transform






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 17 at 21:05

























asked Nov 16 at 2:05









Steven Clark

5431313




5431313












  • You are making things complicated. $int_1^infty psi(x) (x^{s-1}+x^{-s})dx = ?$
    – reuns
    Nov 16 at 2:32












  • @reuns I evaluated the integral $int_1^{infty }psi (x)left(x^{s/2}+x^{frac{1-s}{2}}right)frac{dx}{x}$. I don't understand how your integral is relevant.
    – Steven Clark
    Nov 20 at 15:12


















  • You are making things complicated. $int_1^infty psi(x) (x^{s-1}+x^{-s})dx = ?$
    – reuns
    Nov 16 at 2:32












  • @reuns I evaluated the integral $int_1^{infty }psi (x)left(x^{s/2}+x^{frac{1-s}{2}}right)frac{dx}{x}$. I don't understand how your integral is relevant.
    – Steven Clark
    Nov 20 at 15:12
















You are making things complicated. $int_1^infty psi(x) (x^{s-1}+x^{-s})dx = ?$
– reuns
Nov 16 at 2:32






You are making things complicated. $int_1^infty psi(x) (x^{s-1}+x^{-s})dx = ?$
– reuns
Nov 16 at 2:32














@reuns I evaluated the integral $int_1^{infty }psi (x)left(x^{s/2}+x^{frac{1-s}{2}}right)frac{dx}{x}$. I don't understand how your integral is relevant.
– Steven Clark
Nov 20 at 15:12




@reuns I evaluated the integral $int_1^{infty }psi (x)left(x^{s/2}+x^{frac{1-s}{2}}right)frac{dx}{x}$. I don't understand how your integral is relevant.
– Steven Clark
Nov 20 at 15:12















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000617%2fquestions-related-to-the-riemann-xi-function-xis-and-jacobi-theta-functions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000617%2fquestions-related-to-the-riemann-xi-function-xis-and-jacobi-theta-functions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Probability when a professor distributes a quiz and homework assignment to a class of n students.

Aardman Animations

Are they similar matrix