Express $frac{d^2z}{dtheta^2}$ Polar coordinates
up vote
1
down vote
favorite
Let $(x, y)$ be Cartesian coordinates in the plane and let $(r, theta)$ be Polar coordinates. Express $frac{d^2z}{dtheta^2}$.
my attempt
$z = f(x, y)$
Note
$frac{du}{dtheta} = frac{dr}{dtheta}cos(theta) = -rsin(theta)$
$frac{dy}{dtheta} = rcos(theta)$
$frac{dz}{dtheta} = frac{df}{du}frac{du}{dtheta} + frac{df}{dy}frac{dy}{dtheta}$
$frac{dz}{dtheta} = -r frac{df}{du}sin(theta) + rfrac{df}{dy}cos(theta)$
$frac{1}{r}frac{d}{dtheta}(frac{dz}{dtheta}) = frac{d}{dtheta}(frac{df}{du})sin(theta) - cos(theta)frac{df}{du} + frac{d}{dtheta} (frac{df}{dy})cos(theta) - frac{df}{dy}sin(theta)$
$frac{1}{r}frac{d^2z}{dtheta^2} = -frac{d^2f}{dx^2}frac{dx}{dtheta}sin(theta) - frac{df}{du}cos(theta) + frac{d^2f}{dy^2}(frac{dy}{dtheta})cos(theta) - frac{df}{dy}sin(theta)$
thus,
$$frac{d^2z}{dtheta^2} = r^2sin^2(theta)frac{d^2f}{x^2} - frac{rdf}{dx}cos(theta) - r frac{df}{dy}sin(theta) + r^2 frac{d^2f}{dy^2}cos^2(theta)$$
Is this correct?
multivariable-calculus
add a comment |
up vote
1
down vote
favorite
Let $(x, y)$ be Cartesian coordinates in the plane and let $(r, theta)$ be Polar coordinates. Express $frac{d^2z}{dtheta^2}$.
my attempt
$z = f(x, y)$
Note
$frac{du}{dtheta} = frac{dr}{dtheta}cos(theta) = -rsin(theta)$
$frac{dy}{dtheta} = rcos(theta)$
$frac{dz}{dtheta} = frac{df}{du}frac{du}{dtheta} + frac{df}{dy}frac{dy}{dtheta}$
$frac{dz}{dtheta} = -r frac{df}{du}sin(theta) + rfrac{df}{dy}cos(theta)$
$frac{1}{r}frac{d}{dtheta}(frac{dz}{dtheta}) = frac{d}{dtheta}(frac{df}{du})sin(theta) - cos(theta)frac{df}{du} + frac{d}{dtheta} (frac{df}{dy})cos(theta) - frac{df}{dy}sin(theta)$
$frac{1}{r}frac{d^2z}{dtheta^2} = -frac{d^2f}{dx^2}frac{dx}{dtheta}sin(theta) - frac{df}{du}cos(theta) + frac{d^2f}{dy^2}(frac{dy}{dtheta})cos(theta) - frac{df}{dy}sin(theta)$
thus,
$$frac{d^2z}{dtheta^2} = r^2sin^2(theta)frac{d^2f}{x^2} - frac{rdf}{dx}cos(theta) - r frac{df}{dy}sin(theta) + r^2 frac{d^2f}{dy^2}cos^2(theta)$$
Is this correct?
multivariable-calculus
You almost have it. You missed the mixed partial derivatives of the form $frac{partial^2 f}{partial xpartial y}$ in the calculation.
– maxmilgram
Nov 16 at 6:52
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $(x, y)$ be Cartesian coordinates in the plane and let $(r, theta)$ be Polar coordinates. Express $frac{d^2z}{dtheta^2}$.
my attempt
$z = f(x, y)$
Note
$frac{du}{dtheta} = frac{dr}{dtheta}cos(theta) = -rsin(theta)$
$frac{dy}{dtheta} = rcos(theta)$
$frac{dz}{dtheta} = frac{df}{du}frac{du}{dtheta} + frac{df}{dy}frac{dy}{dtheta}$
$frac{dz}{dtheta} = -r frac{df}{du}sin(theta) + rfrac{df}{dy}cos(theta)$
$frac{1}{r}frac{d}{dtheta}(frac{dz}{dtheta}) = frac{d}{dtheta}(frac{df}{du})sin(theta) - cos(theta)frac{df}{du} + frac{d}{dtheta} (frac{df}{dy})cos(theta) - frac{df}{dy}sin(theta)$
$frac{1}{r}frac{d^2z}{dtheta^2} = -frac{d^2f}{dx^2}frac{dx}{dtheta}sin(theta) - frac{df}{du}cos(theta) + frac{d^2f}{dy^2}(frac{dy}{dtheta})cos(theta) - frac{df}{dy}sin(theta)$
thus,
$$frac{d^2z}{dtheta^2} = r^2sin^2(theta)frac{d^2f}{x^2} - frac{rdf}{dx}cos(theta) - r frac{df}{dy}sin(theta) + r^2 frac{d^2f}{dy^2}cos^2(theta)$$
Is this correct?
multivariable-calculus
Let $(x, y)$ be Cartesian coordinates in the plane and let $(r, theta)$ be Polar coordinates. Express $frac{d^2z}{dtheta^2}$.
my attempt
$z = f(x, y)$
Note
$frac{du}{dtheta} = frac{dr}{dtheta}cos(theta) = -rsin(theta)$
$frac{dy}{dtheta} = rcos(theta)$
$frac{dz}{dtheta} = frac{df}{du}frac{du}{dtheta} + frac{df}{dy}frac{dy}{dtheta}$
$frac{dz}{dtheta} = -r frac{df}{du}sin(theta) + rfrac{df}{dy}cos(theta)$
$frac{1}{r}frac{d}{dtheta}(frac{dz}{dtheta}) = frac{d}{dtheta}(frac{df}{du})sin(theta) - cos(theta)frac{df}{du} + frac{d}{dtheta} (frac{df}{dy})cos(theta) - frac{df}{dy}sin(theta)$
$frac{1}{r}frac{d^2z}{dtheta^2} = -frac{d^2f}{dx^2}frac{dx}{dtheta}sin(theta) - frac{df}{du}cos(theta) + frac{d^2f}{dy^2}(frac{dy}{dtheta})cos(theta) - frac{df}{dy}sin(theta)$
thus,
$$frac{d^2z}{dtheta^2} = r^2sin^2(theta)frac{d^2f}{x^2} - frac{rdf}{dx}cos(theta) - r frac{df}{dy}sin(theta) + r^2 frac{d^2f}{dy^2}cos^2(theta)$$
Is this correct?
multivariable-calculus
multivariable-calculus
asked Nov 16 at 2:04
Tree Garen
35019
35019
You almost have it. You missed the mixed partial derivatives of the form $frac{partial^2 f}{partial xpartial y}$ in the calculation.
– maxmilgram
Nov 16 at 6:52
add a comment |
You almost have it. You missed the mixed partial derivatives of the form $frac{partial^2 f}{partial xpartial y}$ in the calculation.
– maxmilgram
Nov 16 at 6:52
You almost have it. You missed the mixed partial derivatives of the form $frac{partial^2 f}{partial xpartial y}$ in the calculation.
– maxmilgram
Nov 16 at 6:52
You almost have it. You missed the mixed partial derivatives of the form $frac{partial^2 f}{partial xpartial y}$ in the calculation.
– maxmilgram
Nov 16 at 6:52
add a comment |
3 Answers
3
active
oldest
votes
up vote
1
down vote
accepted
I think I have something. Was careful to apply the chain rule to terms like $frac{d}{dtheta}(frac{partial f}{partial x})$. This results in the second partial derivatives appearing in the below.
$$z=f(x,y)$$
$$dz/dtheta=frac{partial f}{partial x}frac{dx}{dtheta}+frac{partial f}{partial y}frac{dy}{dtheta}$$
$$frac{d^2z}{dtheta^2}=frac{d}{dtheta}(frac{partial f}{partial x})frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{d}{dtheta}(frac{partial f}{partial y})frac{dy}{dtheta}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}$$
$$frac{d^2z}{dtheta^2}=(frac{partial^2f}{partial x^2}frac{dx}{dtheta}+frac{partial ^2f}{partial xpartial y}frac{dy}{dtheta})(frac{dx}{dtheta})+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}+(frac{partial^2 f}{partial ypartial x}frac{dx}{dtheta}+frac{partial ^2f}{partial y^2}frac{dy}{dtheta})frac{dy}{dtheta}$$
$$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(frac{dx}{dtheta})^2+2frac{partial ^2 f}{partial x partial y}frac{dy}{dtheta}frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta^2}+frac{partial f}{partial y}frac{d^2y}{dtheta ^2}+frac{partial ^2 f}{partial y^2}(frac{dy}{dtheta})^2$$
$x=rcos{theta}$
$y=rsin{theta}$
$dx/dtheta=-rsin{theta}$
$dy/dtheta= r cos{theta}$
$$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(r^2sin^2{theta})+2frac{partial ^2f}{partial x partial y}(-r^2sin{theta}cos{theta})+frac{partial f}{partial x}(-rcos{theta})+frac{partial f}{partial y}(-rsin{theta})+frac{partial ^2f}{partial y^2}(r^2cos^2{theta})$$
add a comment |
up vote
0
down vote
In my mind, the bulletproof way to calculate differential operators of transformations is the following:
- Write down the equality of the transformation:
$$z(r,varphi)=f(rcos(varphi),rsin(varphi))$$
- Now you can simply differentiate twice and need not to worry about forgetting anything because nothing is 'hidden'
$$frac{partial z}{partialvarphi}=f_x(rcos(varphi),rsin(varphi))(-rsin(varphi))+f_y(rcos(varphi),rsin(varphi))(rcos(varphi))$$
$$frac{partial^2 z}{partialvarphi^2}=f_{xx}(rcos(varphi),rsin(varphi))(-rsin(varphi))^2-2f_{xy}(rcos(varphi),rsin(varphi))r^2sin(varphi)cos(varphi)-f_x(rcos(varphi),rsin(varphi))(rcos(varphi))+f_{yy}(rcos(varphi),rsin(varphi))(rcos(varphi))^2-f_y(rcos(varphi),rsin(varphi))(rsin(varphi))$$
add a comment |
up vote
0
down vote
I thought of a vector approach.
$z=f(x,y)$, find $d^2z/dtheta^2$.
$frac{df}{dtheta}=nabla fcdot frac{dvec{s}}{dtheta}$
$frac{d^2f}{dtheta^2}=nabla(nabla fcdot frac{dvec{s}}{dtheta})cdot frac{dvec{s}}{dtheta}$
We have the identity: $nabla(vec{A}cdot vec{B})=(vec{A}cdot nabla)vec{B}+(vec{B}cdot nabla)vec{A}+vec{A}times(nabla times vec{B})+vec{B}times(nabla times vec{A})$
So: $frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})+frac{dvec{s}}{dtheta}times(nabla times nabla f) ]$
This can be simplified some. By vector identity, $nabla times nabla f =0.$
So:
$frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})]$
$frac{dvec{s}}{dtheta}=<-rsin{(theta)}, rcos{(theta),0}>=<-y,x,0>$
$nabla timesfrac{dvec{s}}{d theta}=<0,0,2>$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
I think I have something. Was careful to apply the chain rule to terms like $frac{d}{dtheta}(frac{partial f}{partial x})$. This results in the second partial derivatives appearing in the below.
$$z=f(x,y)$$
$$dz/dtheta=frac{partial f}{partial x}frac{dx}{dtheta}+frac{partial f}{partial y}frac{dy}{dtheta}$$
$$frac{d^2z}{dtheta^2}=frac{d}{dtheta}(frac{partial f}{partial x})frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{d}{dtheta}(frac{partial f}{partial y})frac{dy}{dtheta}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}$$
$$frac{d^2z}{dtheta^2}=(frac{partial^2f}{partial x^2}frac{dx}{dtheta}+frac{partial ^2f}{partial xpartial y}frac{dy}{dtheta})(frac{dx}{dtheta})+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}+(frac{partial^2 f}{partial ypartial x}frac{dx}{dtheta}+frac{partial ^2f}{partial y^2}frac{dy}{dtheta})frac{dy}{dtheta}$$
$$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(frac{dx}{dtheta})^2+2frac{partial ^2 f}{partial x partial y}frac{dy}{dtheta}frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta^2}+frac{partial f}{partial y}frac{d^2y}{dtheta ^2}+frac{partial ^2 f}{partial y^2}(frac{dy}{dtheta})^2$$
$x=rcos{theta}$
$y=rsin{theta}$
$dx/dtheta=-rsin{theta}$
$dy/dtheta= r cos{theta}$
$$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(r^2sin^2{theta})+2frac{partial ^2f}{partial x partial y}(-r^2sin{theta}cos{theta})+frac{partial f}{partial x}(-rcos{theta})+frac{partial f}{partial y}(-rsin{theta})+frac{partial ^2f}{partial y^2}(r^2cos^2{theta})$$
add a comment |
up vote
1
down vote
accepted
I think I have something. Was careful to apply the chain rule to terms like $frac{d}{dtheta}(frac{partial f}{partial x})$. This results in the second partial derivatives appearing in the below.
$$z=f(x,y)$$
$$dz/dtheta=frac{partial f}{partial x}frac{dx}{dtheta}+frac{partial f}{partial y}frac{dy}{dtheta}$$
$$frac{d^2z}{dtheta^2}=frac{d}{dtheta}(frac{partial f}{partial x})frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{d}{dtheta}(frac{partial f}{partial y})frac{dy}{dtheta}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}$$
$$frac{d^2z}{dtheta^2}=(frac{partial^2f}{partial x^2}frac{dx}{dtheta}+frac{partial ^2f}{partial xpartial y}frac{dy}{dtheta})(frac{dx}{dtheta})+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}+(frac{partial^2 f}{partial ypartial x}frac{dx}{dtheta}+frac{partial ^2f}{partial y^2}frac{dy}{dtheta})frac{dy}{dtheta}$$
$$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(frac{dx}{dtheta})^2+2frac{partial ^2 f}{partial x partial y}frac{dy}{dtheta}frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta^2}+frac{partial f}{partial y}frac{d^2y}{dtheta ^2}+frac{partial ^2 f}{partial y^2}(frac{dy}{dtheta})^2$$
$x=rcos{theta}$
$y=rsin{theta}$
$dx/dtheta=-rsin{theta}$
$dy/dtheta= r cos{theta}$
$$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(r^2sin^2{theta})+2frac{partial ^2f}{partial x partial y}(-r^2sin{theta}cos{theta})+frac{partial f}{partial x}(-rcos{theta})+frac{partial f}{partial y}(-rsin{theta})+frac{partial ^2f}{partial y^2}(r^2cos^2{theta})$$
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
I think I have something. Was careful to apply the chain rule to terms like $frac{d}{dtheta}(frac{partial f}{partial x})$. This results in the second partial derivatives appearing in the below.
$$z=f(x,y)$$
$$dz/dtheta=frac{partial f}{partial x}frac{dx}{dtheta}+frac{partial f}{partial y}frac{dy}{dtheta}$$
$$frac{d^2z}{dtheta^2}=frac{d}{dtheta}(frac{partial f}{partial x})frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{d}{dtheta}(frac{partial f}{partial y})frac{dy}{dtheta}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}$$
$$frac{d^2z}{dtheta^2}=(frac{partial^2f}{partial x^2}frac{dx}{dtheta}+frac{partial ^2f}{partial xpartial y}frac{dy}{dtheta})(frac{dx}{dtheta})+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}+(frac{partial^2 f}{partial ypartial x}frac{dx}{dtheta}+frac{partial ^2f}{partial y^2}frac{dy}{dtheta})frac{dy}{dtheta}$$
$$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(frac{dx}{dtheta})^2+2frac{partial ^2 f}{partial x partial y}frac{dy}{dtheta}frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta^2}+frac{partial f}{partial y}frac{d^2y}{dtheta ^2}+frac{partial ^2 f}{partial y^2}(frac{dy}{dtheta})^2$$
$x=rcos{theta}$
$y=rsin{theta}$
$dx/dtheta=-rsin{theta}$
$dy/dtheta= r cos{theta}$
$$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(r^2sin^2{theta})+2frac{partial ^2f}{partial x partial y}(-r^2sin{theta}cos{theta})+frac{partial f}{partial x}(-rcos{theta})+frac{partial f}{partial y}(-rsin{theta})+frac{partial ^2f}{partial y^2}(r^2cos^2{theta})$$
I think I have something. Was careful to apply the chain rule to terms like $frac{d}{dtheta}(frac{partial f}{partial x})$. This results in the second partial derivatives appearing in the below.
$$z=f(x,y)$$
$$dz/dtheta=frac{partial f}{partial x}frac{dx}{dtheta}+frac{partial f}{partial y}frac{dy}{dtheta}$$
$$frac{d^2z}{dtheta^2}=frac{d}{dtheta}(frac{partial f}{partial x})frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{d}{dtheta}(frac{partial f}{partial y})frac{dy}{dtheta}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}$$
$$frac{d^2z}{dtheta^2}=(frac{partial^2f}{partial x^2}frac{dx}{dtheta}+frac{partial ^2f}{partial xpartial y}frac{dy}{dtheta})(frac{dx}{dtheta})+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}+(frac{partial^2 f}{partial ypartial x}frac{dx}{dtheta}+frac{partial ^2f}{partial y^2}frac{dy}{dtheta})frac{dy}{dtheta}$$
$$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(frac{dx}{dtheta})^2+2frac{partial ^2 f}{partial x partial y}frac{dy}{dtheta}frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta^2}+frac{partial f}{partial y}frac{d^2y}{dtheta ^2}+frac{partial ^2 f}{partial y^2}(frac{dy}{dtheta})^2$$
$x=rcos{theta}$
$y=rsin{theta}$
$dx/dtheta=-rsin{theta}$
$dy/dtheta= r cos{theta}$
$$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(r^2sin^2{theta})+2frac{partial ^2f}{partial x partial y}(-r^2sin{theta}cos{theta})+frac{partial f}{partial x}(-rcos{theta})+frac{partial f}{partial y}(-rsin{theta})+frac{partial ^2f}{partial y^2}(r^2cos^2{theta})$$
answered Nov 16 at 6:13
TurlocTheRed
768210
768210
add a comment |
add a comment |
up vote
0
down vote
In my mind, the bulletproof way to calculate differential operators of transformations is the following:
- Write down the equality of the transformation:
$$z(r,varphi)=f(rcos(varphi),rsin(varphi))$$
- Now you can simply differentiate twice and need not to worry about forgetting anything because nothing is 'hidden'
$$frac{partial z}{partialvarphi}=f_x(rcos(varphi),rsin(varphi))(-rsin(varphi))+f_y(rcos(varphi),rsin(varphi))(rcos(varphi))$$
$$frac{partial^2 z}{partialvarphi^2}=f_{xx}(rcos(varphi),rsin(varphi))(-rsin(varphi))^2-2f_{xy}(rcos(varphi),rsin(varphi))r^2sin(varphi)cos(varphi)-f_x(rcos(varphi),rsin(varphi))(rcos(varphi))+f_{yy}(rcos(varphi),rsin(varphi))(rcos(varphi))^2-f_y(rcos(varphi),rsin(varphi))(rsin(varphi))$$
add a comment |
up vote
0
down vote
In my mind, the bulletproof way to calculate differential operators of transformations is the following:
- Write down the equality of the transformation:
$$z(r,varphi)=f(rcos(varphi),rsin(varphi))$$
- Now you can simply differentiate twice and need not to worry about forgetting anything because nothing is 'hidden'
$$frac{partial z}{partialvarphi}=f_x(rcos(varphi),rsin(varphi))(-rsin(varphi))+f_y(rcos(varphi),rsin(varphi))(rcos(varphi))$$
$$frac{partial^2 z}{partialvarphi^2}=f_{xx}(rcos(varphi),rsin(varphi))(-rsin(varphi))^2-2f_{xy}(rcos(varphi),rsin(varphi))r^2sin(varphi)cos(varphi)-f_x(rcos(varphi),rsin(varphi))(rcos(varphi))+f_{yy}(rcos(varphi),rsin(varphi))(rcos(varphi))^2-f_y(rcos(varphi),rsin(varphi))(rsin(varphi))$$
add a comment |
up vote
0
down vote
up vote
0
down vote
In my mind, the bulletproof way to calculate differential operators of transformations is the following:
- Write down the equality of the transformation:
$$z(r,varphi)=f(rcos(varphi),rsin(varphi))$$
- Now you can simply differentiate twice and need not to worry about forgetting anything because nothing is 'hidden'
$$frac{partial z}{partialvarphi}=f_x(rcos(varphi),rsin(varphi))(-rsin(varphi))+f_y(rcos(varphi),rsin(varphi))(rcos(varphi))$$
$$frac{partial^2 z}{partialvarphi^2}=f_{xx}(rcos(varphi),rsin(varphi))(-rsin(varphi))^2-2f_{xy}(rcos(varphi),rsin(varphi))r^2sin(varphi)cos(varphi)-f_x(rcos(varphi),rsin(varphi))(rcos(varphi))+f_{yy}(rcos(varphi),rsin(varphi))(rcos(varphi))^2-f_y(rcos(varphi),rsin(varphi))(rsin(varphi))$$
In my mind, the bulletproof way to calculate differential operators of transformations is the following:
- Write down the equality of the transformation:
$$z(r,varphi)=f(rcos(varphi),rsin(varphi))$$
- Now you can simply differentiate twice and need not to worry about forgetting anything because nothing is 'hidden'
$$frac{partial z}{partialvarphi}=f_x(rcos(varphi),rsin(varphi))(-rsin(varphi))+f_y(rcos(varphi),rsin(varphi))(rcos(varphi))$$
$$frac{partial^2 z}{partialvarphi^2}=f_{xx}(rcos(varphi),rsin(varphi))(-rsin(varphi))^2-2f_{xy}(rcos(varphi),rsin(varphi))r^2sin(varphi)cos(varphi)-f_x(rcos(varphi),rsin(varphi))(rcos(varphi))+f_{yy}(rcos(varphi),rsin(varphi))(rcos(varphi))^2-f_y(rcos(varphi),rsin(varphi))(rsin(varphi))$$
answered Nov 16 at 6:49
maxmilgram
4227
4227
add a comment |
add a comment |
up vote
0
down vote
I thought of a vector approach.
$z=f(x,y)$, find $d^2z/dtheta^2$.
$frac{df}{dtheta}=nabla fcdot frac{dvec{s}}{dtheta}$
$frac{d^2f}{dtheta^2}=nabla(nabla fcdot frac{dvec{s}}{dtheta})cdot frac{dvec{s}}{dtheta}$
We have the identity: $nabla(vec{A}cdot vec{B})=(vec{A}cdot nabla)vec{B}+(vec{B}cdot nabla)vec{A}+vec{A}times(nabla times vec{B})+vec{B}times(nabla times vec{A})$
So: $frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})+frac{dvec{s}}{dtheta}times(nabla times nabla f) ]$
This can be simplified some. By vector identity, $nabla times nabla f =0.$
So:
$frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})]$
$frac{dvec{s}}{dtheta}=<-rsin{(theta)}, rcos{(theta),0}>=<-y,x,0>$
$nabla timesfrac{dvec{s}}{d theta}=<0,0,2>$
add a comment |
up vote
0
down vote
I thought of a vector approach.
$z=f(x,y)$, find $d^2z/dtheta^2$.
$frac{df}{dtheta}=nabla fcdot frac{dvec{s}}{dtheta}$
$frac{d^2f}{dtheta^2}=nabla(nabla fcdot frac{dvec{s}}{dtheta})cdot frac{dvec{s}}{dtheta}$
We have the identity: $nabla(vec{A}cdot vec{B})=(vec{A}cdot nabla)vec{B}+(vec{B}cdot nabla)vec{A}+vec{A}times(nabla times vec{B})+vec{B}times(nabla times vec{A})$
So: $frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})+frac{dvec{s}}{dtheta}times(nabla times nabla f) ]$
This can be simplified some. By vector identity, $nabla times nabla f =0.$
So:
$frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})]$
$frac{dvec{s}}{dtheta}=<-rsin{(theta)}, rcos{(theta),0}>=<-y,x,0>$
$nabla timesfrac{dvec{s}}{d theta}=<0,0,2>$
add a comment |
up vote
0
down vote
up vote
0
down vote
I thought of a vector approach.
$z=f(x,y)$, find $d^2z/dtheta^2$.
$frac{df}{dtheta}=nabla fcdot frac{dvec{s}}{dtheta}$
$frac{d^2f}{dtheta^2}=nabla(nabla fcdot frac{dvec{s}}{dtheta})cdot frac{dvec{s}}{dtheta}$
We have the identity: $nabla(vec{A}cdot vec{B})=(vec{A}cdot nabla)vec{B}+(vec{B}cdot nabla)vec{A}+vec{A}times(nabla times vec{B})+vec{B}times(nabla times vec{A})$
So: $frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})+frac{dvec{s}}{dtheta}times(nabla times nabla f) ]$
This can be simplified some. By vector identity, $nabla times nabla f =0.$
So:
$frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})]$
$frac{dvec{s}}{dtheta}=<-rsin{(theta)}, rcos{(theta),0}>=<-y,x,0>$
$nabla timesfrac{dvec{s}}{d theta}=<0,0,2>$
I thought of a vector approach.
$z=f(x,y)$, find $d^2z/dtheta^2$.
$frac{df}{dtheta}=nabla fcdot frac{dvec{s}}{dtheta}$
$frac{d^2f}{dtheta^2}=nabla(nabla fcdot frac{dvec{s}}{dtheta})cdot frac{dvec{s}}{dtheta}$
We have the identity: $nabla(vec{A}cdot vec{B})=(vec{A}cdot nabla)vec{B}+(vec{B}cdot nabla)vec{A}+vec{A}times(nabla times vec{B})+vec{B}times(nabla times vec{A})$
So: $frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})+frac{dvec{s}}{dtheta}times(nabla times nabla f) ]$
This can be simplified some. By vector identity, $nabla times nabla f =0.$
So:
$frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})]$
$frac{dvec{s}}{dtheta}=<-rsin{(theta)}, rcos{(theta),0}>=<-y,x,0>$
$nabla timesfrac{dvec{s}}{d theta}=<0,0,2>$
edited Nov 18 at 7:42
answered Nov 18 at 5:32
TurlocTheRed
768210
768210
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000615%2fexpress-fracd2zd-theta2-polar-coordinates%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
You almost have it. You missed the mixed partial derivatives of the form $frac{partial^2 f}{partial xpartial y}$ in the calculation.
– maxmilgram
Nov 16 at 6:52