Quest for a non-inductive proof of the addition theorem of probability.
up vote
0
down vote
favorite
The addition theorem of probability states that:
$$P(A_1cup A_2cup … cup A_n) = sum P(A_i) - sum P(A_icap A_j) + sum P(A_icap A_jcap A_k) - … + (-1)^nP(A_1cap A_2cap … cap A_n)$$
Although this result is proved using the method of induction (as in the case of most textbooks), can it be proved directly?
The only thing which I see is its structural similarity with the general product of binomials :
$$(1+alpha)(1+beta)……(1+nu) = 1 + (alpha + beta + … + nu) + (alpha beta + ……) + ……… + (alpha beta gamma …nu)$$
However I am unable to get a link between the two. Any help is appreciated.
probability
add a comment |
up vote
0
down vote
favorite
The addition theorem of probability states that:
$$P(A_1cup A_2cup … cup A_n) = sum P(A_i) - sum P(A_icap A_j) + sum P(A_icap A_jcap A_k) - … + (-1)^nP(A_1cap A_2cap … cap A_n)$$
Although this result is proved using the method of induction (as in the case of most textbooks), can it be proved directly?
The only thing which I see is its structural similarity with the general product of binomials :
$$(1+alpha)(1+beta)……(1+nu) = 1 + (alpha + beta + … + nu) + (alpha beta + ……) + ……… + (alpha beta gamma …nu)$$
However I am unable to get a link between the two. Any help is appreciated.
probability
You could decompose the union into disjoint sets. For instance, $A cup B = (A cap B) cup (A cap B^c) cup (A^c cap B)$. Now rearrange $P(A) = P(A cap B) + P(A cap B^c)$.
– Stockfish
Nov 16 at 12:46
Of course, that's not really an answer to your question ...
– Stockfish
Nov 16 at 12:53
@Stockfish, I think it may involve polynomial fields and other concepts of linear algebra, when we are looking for the decomposition of the general union operator and further rearrangement.
– Awe Kumar Jha
Nov 16 at 12:58
@Tusky, Ah, that was very helpful.
– Awe Kumar Jha
Nov 16 at 13:20
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
The addition theorem of probability states that:
$$P(A_1cup A_2cup … cup A_n) = sum P(A_i) - sum P(A_icap A_j) + sum P(A_icap A_jcap A_k) - … + (-1)^nP(A_1cap A_2cap … cap A_n)$$
Although this result is proved using the method of induction (as in the case of most textbooks), can it be proved directly?
The only thing which I see is its structural similarity with the general product of binomials :
$$(1+alpha)(1+beta)……(1+nu) = 1 + (alpha + beta + … + nu) + (alpha beta + ……) + ……… + (alpha beta gamma …nu)$$
However I am unable to get a link between the two. Any help is appreciated.
probability
The addition theorem of probability states that:
$$P(A_1cup A_2cup … cup A_n) = sum P(A_i) - sum P(A_icap A_j) + sum P(A_icap A_jcap A_k) - … + (-1)^nP(A_1cap A_2cap … cap A_n)$$
Although this result is proved using the method of induction (as in the case of most textbooks), can it be proved directly?
The only thing which I see is its structural similarity with the general product of binomials :
$$(1+alpha)(1+beta)……(1+nu) = 1 + (alpha + beta + … + nu) + (alpha beta + ……) + ……… + (alpha beta gamma …nu)$$
However I am unable to get a link between the two. Any help is appreciated.
probability
probability
edited Nov 16 at 13:15
Asaf Karagila♦
300k32420750
300k32420750
asked Nov 16 at 12:42
Awe Kumar Jha
3189
3189
You could decompose the union into disjoint sets. For instance, $A cup B = (A cap B) cup (A cap B^c) cup (A^c cap B)$. Now rearrange $P(A) = P(A cap B) + P(A cap B^c)$.
– Stockfish
Nov 16 at 12:46
Of course, that's not really an answer to your question ...
– Stockfish
Nov 16 at 12:53
@Stockfish, I think it may involve polynomial fields and other concepts of linear algebra, when we are looking for the decomposition of the general union operator and further rearrangement.
– Awe Kumar Jha
Nov 16 at 12:58
@Tusky, Ah, that was very helpful.
– Awe Kumar Jha
Nov 16 at 13:20
add a comment |
You could decompose the union into disjoint sets. For instance, $A cup B = (A cap B) cup (A cap B^c) cup (A^c cap B)$. Now rearrange $P(A) = P(A cap B) + P(A cap B^c)$.
– Stockfish
Nov 16 at 12:46
Of course, that's not really an answer to your question ...
– Stockfish
Nov 16 at 12:53
@Stockfish, I think it may involve polynomial fields and other concepts of linear algebra, when we are looking for the decomposition of the general union operator and further rearrangement.
– Awe Kumar Jha
Nov 16 at 12:58
@Tusky, Ah, that was very helpful.
– Awe Kumar Jha
Nov 16 at 13:20
You could decompose the union into disjoint sets. For instance, $A cup B = (A cap B) cup (A cap B^c) cup (A^c cap B)$. Now rearrange $P(A) = P(A cap B) + P(A cap B^c)$.
– Stockfish
Nov 16 at 12:46
You could decompose the union into disjoint sets. For instance, $A cup B = (A cap B) cup (A cap B^c) cup (A^c cap B)$. Now rearrange $P(A) = P(A cap B) + P(A cap B^c)$.
– Stockfish
Nov 16 at 12:46
Of course, that's not really an answer to your question ...
– Stockfish
Nov 16 at 12:53
Of course, that's not really an answer to your question ...
– Stockfish
Nov 16 at 12:53
@Stockfish, I think it may involve polynomial fields and other concepts of linear algebra, when we are looking for the decomposition of the general union operator and further rearrangement.
– Awe Kumar Jha
Nov 16 at 12:58
@Stockfish, I think it may involve polynomial fields and other concepts of linear algebra, when we are looking for the decomposition of the general union operator and further rearrangement.
– Awe Kumar Jha
Nov 16 at 12:58
@Tusky, Ah, that was very helpful.
– Awe Kumar Jha
Nov 16 at 13:20
@Tusky, Ah, that was very helpful.
– Awe Kumar Jha
Nov 16 at 13:20
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Your very statement:
$$ P(A1∪A2∪…∪An)=∑P(Ai)−∑P(Ai∩Aj)+∑P(Ai∩Aj∩Ak)−…+(−1)nP(A1∩A2∩…∩An) $$
is what we you arrive at from what we call the Inclusion-Exclusion Principle.
Since you are looking for a non-induction based proof, there exists a proof using the Binomial Theorem here and an algebraic proof using indicator functions over here.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Your very statement:
$$ P(A1∪A2∪…∪An)=∑P(Ai)−∑P(Ai∩Aj)+∑P(Ai∩Aj∩Ak)−…+(−1)nP(A1∩A2∩…∩An) $$
is what we you arrive at from what we call the Inclusion-Exclusion Principle.
Since you are looking for a non-induction based proof, there exists a proof using the Binomial Theorem here and an algebraic proof using indicator functions over here.
add a comment |
up vote
1
down vote
accepted
Your very statement:
$$ P(A1∪A2∪…∪An)=∑P(Ai)−∑P(Ai∩Aj)+∑P(Ai∩Aj∩Ak)−…+(−1)nP(A1∩A2∩…∩An) $$
is what we you arrive at from what we call the Inclusion-Exclusion Principle.
Since you are looking for a non-induction based proof, there exists a proof using the Binomial Theorem here and an algebraic proof using indicator functions over here.
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Your very statement:
$$ P(A1∪A2∪…∪An)=∑P(Ai)−∑P(Ai∩Aj)+∑P(Ai∩Aj∩Ak)−…+(−1)nP(A1∩A2∩…∩An) $$
is what we you arrive at from what we call the Inclusion-Exclusion Principle.
Since you are looking for a non-induction based proof, there exists a proof using the Binomial Theorem here and an algebraic proof using indicator functions over here.
Your very statement:
$$ P(A1∪A2∪…∪An)=∑P(Ai)−∑P(Ai∩Aj)+∑P(Ai∩Aj∩Ak)−…+(−1)nP(A1∩A2∩…∩An) $$
is what we you arrive at from what we call the Inclusion-Exclusion Principle.
Since you are looking for a non-induction based proof, there exists a proof using the Binomial Theorem here and an algebraic proof using indicator functions over here.
answered Nov 16 at 13:34
Tusky
632618
632618
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001097%2fquest-for-a-non-inductive-proof-of-the-addition-theorem-of-probability%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
You could decompose the union into disjoint sets. For instance, $A cup B = (A cap B) cup (A cap B^c) cup (A^c cap B)$. Now rearrange $P(A) = P(A cap B) + P(A cap B^c)$.
– Stockfish
Nov 16 at 12:46
Of course, that's not really an answer to your question ...
– Stockfish
Nov 16 at 12:53
@Stockfish, I think it may involve polynomial fields and other concepts of linear algebra, when we are looking for the decomposition of the general union operator and further rearrangement.
– Awe Kumar Jha
Nov 16 at 12:58
@Tusky, Ah, that was very helpful.
– Awe Kumar Jha
Nov 16 at 13:20