Integral Transformation from circle to unit sphere











up vote
0
down vote

favorite












I want to show that



$displaystyle frac{1}{2pi r}int_{partial B(x,r)}u(y),mathrm{d}s(y)=frac{1}{|S^1|}int_{S^1}u(x+rtheta),mathrm{d}s(theta)$



This is essentially a shift and dilation from (or) to the unit sphere.



I defined a diffeomorphism



$Phicolon S^1rightarrowpartial B(x,r)subsetmathbb{R}^2\
thetamapsto x+rtheta$



where $theta$ is a point on $S^1$.



It follows that $|det(DPhi(S^1))|= r$



and therefore



$displaystyle frac{1}{2pi r}int_{partial B(x,r)}u(y),mathrm{d}s(y)=frac{1}{2pi r}int_{S^1}u(Phi(S^1))r,mathrm{d}s(theta)=frac{1}{2pi(=|S^1|)}int_{S^1}u(x+rtheta),mathrm{d}s(theta)$



Is this correct? If yes, I appreciate to have a look at solutions using a different approach.










share|cite|improve this question




























    up vote
    0
    down vote

    favorite












    I want to show that



    $displaystyle frac{1}{2pi r}int_{partial B(x,r)}u(y),mathrm{d}s(y)=frac{1}{|S^1|}int_{S^1}u(x+rtheta),mathrm{d}s(theta)$



    This is essentially a shift and dilation from (or) to the unit sphere.



    I defined a diffeomorphism



    $Phicolon S^1rightarrowpartial B(x,r)subsetmathbb{R}^2\
    thetamapsto x+rtheta$



    where $theta$ is a point on $S^1$.



    It follows that $|det(DPhi(S^1))|= r$



    and therefore



    $displaystyle frac{1}{2pi r}int_{partial B(x,r)}u(y),mathrm{d}s(y)=frac{1}{2pi r}int_{S^1}u(Phi(S^1))r,mathrm{d}s(theta)=frac{1}{2pi(=|S^1|)}int_{S^1}u(x+rtheta),mathrm{d}s(theta)$



    Is this correct? If yes, I appreciate to have a look at solutions using a different approach.










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I want to show that



      $displaystyle frac{1}{2pi r}int_{partial B(x,r)}u(y),mathrm{d}s(y)=frac{1}{|S^1|}int_{S^1}u(x+rtheta),mathrm{d}s(theta)$



      This is essentially a shift and dilation from (or) to the unit sphere.



      I defined a diffeomorphism



      $Phicolon S^1rightarrowpartial B(x,r)subsetmathbb{R}^2\
      thetamapsto x+rtheta$



      where $theta$ is a point on $S^1$.



      It follows that $|det(DPhi(S^1))|= r$



      and therefore



      $displaystyle frac{1}{2pi r}int_{partial B(x,r)}u(y),mathrm{d}s(y)=frac{1}{2pi r}int_{S^1}u(Phi(S^1))r,mathrm{d}s(theta)=frac{1}{2pi(=|S^1|)}int_{S^1}u(x+rtheta),mathrm{d}s(theta)$



      Is this correct? If yes, I appreciate to have a look at solutions using a different approach.










      share|cite|improve this question















      I want to show that



      $displaystyle frac{1}{2pi r}int_{partial B(x,r)}u(y),mathrm{d}s(y)=frac{1}{|S^1|}int_{S^1}u(x+rtheta),mathrm{d}s(theta)$



      This is essentially a shift and dilation from (or) to the unit sphere.



      I defined a diffeomorphism



      $Phicolon S^1rightarrowpartial B(x,r)subsetmathbb{R}^2\
      thetamapsto x+rtheta$



      where $theta$ is a point on $S^1$.



      It follows that $|det(DPhi(S^1))|= r$



      and therefore



      $displaystyle frac{1}{2pi r}int_{partial B(x,r)}u(y),mathrm{d}s(y)=frac{1}{2pi r}int_{S^1}u(Phi(S^1))r,mathrm{d}s(theta)=frac{1}{2pi(=|S^1|)}int_{S^1}u(x+rtheta),mathrm{d}s(theta)$



      Is this correct? If yes, I appreciate to have a look at solutions using a different approach.







      integration lebesgue-integral integral-transforms






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 16 at 14:24

























      asked Nov 16 at 13:21









      EpsilonDelta

      5921515




      5921515



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001128%2fintegral-transformation-from-circle-to-unit-sphere%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001128%2fintegral-transformation-from-circle-to-unit-sphere%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Probability when a professor distributes a quiz and homework assignment to a class of n students.

          Aardman Animations

          Are they similar matrix