Prove: $ b_n underset{ntoinfty}{longrightarrow} L, text{as} b_n = frac{sum_{k=1}^{n}t_{k}cdot...
up vote
0
down vote
favorite
Given $(a_{n})_{n=1}^infty$ , a sequence that converges to $L$ ($L$ is not necessarily $in mathbb{R}$).
Let $left(t_{n}right)$ be a positive sequence such that:
$$ sum_{k=1}^{n}t_{k} underset{ntoinfty}{longrightarrow} infty$$
We'll define:
$$ b_n = frac{sum_{k=1}^{n}t_{k}cdot {a_k}}{sum_{k=1}^{n}t_{k}} $$
Prove: $ b_n underset{ntoinfty}{longrightarrow} L$.
calculus sequences-and-series
add a comment |
up vote
0
down vote
favorite
Given $(a_{n})_{n=1}^infty$ , a sequence that converges to $L$ ($L$ is not necessarily $in mathbb{R}$).
Let $left(t_{n}right)$ be a positive sequence such that:
$$ sum_{k=1}^{n}t_{k} underset{ntoinfty}{longrightarrow} infty$$
We'll define:
$$ b_n = frac{sum_{k=1}^{n}t_{k}cdot {a_k}}{sum_{k=1}^{n}t_{k}} $$
Prove: $ b_n underset{ntoinfty}{longrightarrow} L$.
calculus sequences-and-series
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Given $(a_{n})_{n=1}^infty$ , a sequence that converges to $L$ ($L$ is not necessarily $in mathbb{R}$).
Let $left(t_{n}right)$ be a positive sequence such that:
$$ sum_{k=1}^{n}t_{k} underset{ntoinfty}{longrightarrow} infty$$
We'll define:
$$ b_n = frac{sum_{k=1}^{n}t_{k}cdot {a_k}}{sum_{k=1}^{n}t_{k}} $$
Prove: $ b_n underset{ntoinfty}{longrightarrow} L$.
calculus sequences-and-series
Given $(a_{n})_{n=1}^infty$ , a sequence that converges to $L$ ($L$ is not necessarily $in mathbb{R}$).
Let $left(t_{n}right)$ be a positive sequence such that:
$$ sum_{k=1}^{n}t_{k} underset{ntoinfty}{longrightarrow} infty$$
We'll define:
$$ b_n = frac{sum_{k=1}^{n}t_{k}cdot {a_k}}{sum_{k=1}^{n}t_{k}} $$
Prove: $ b_n underset{ntoinfty}{longrightarrow} L$.
calculus sequences-and-series
calculus sequences-and-series
edited Nov 16 at 12:12
asked Nov 15 at 13:06
Jneven
684320
684320
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
2
down vote
accepted
It is an easy consquence of Theorem of Stolz : https://en.wikipedia.org/wiki/Stolz%E2%80%93Ces%C3%A0ro_theorem
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
It is an easy consquence of Theorem of Stolz : https://en.wikipedia.org/wiki/Stolz%E2%80%93Ces%C3%A0ro_theorem
add a comment |
up vote
2
down vote
accepted
It is an easy consquence of Theorem of Stolz : https://en.wikipedia.org/wiki/Stolz%E2%80%93Ces%C3%A0ro_theorem
add a comment |
up vote
2
down vote
accepted
up vote
2
down vote
accepted
It is an easy consquence of Theorem of Stolz : https://en.wikipedia.org/wiki/Stolz%E2%80%93Ces%C3%A0ro_theorem
It is an easy consquence of Theorem of Stolz : https://en.wikipedia.org/wiki/Stolz%E2%80%93Ces%C3%A0ro_theorem
answered Nov 16 at 12:09
MotylaNogaTomkaMazura
6,311917
6,311917
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999686%2fprove-b-n-undersetn-to-infty-longrightarrow-l-textas-b-n-frac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown