I have to show that $P, R, Q, S $ are on a circle.
up vote
1
down vote
favorite
Let $ABCD $ a paralelogram and $H $ the hortocenter of $triangle ABC $.
Let $PQ $ , $RS $ trough $H $ s.t. $PQ|| AB $ and $RS||BC $ and $Pin [DA], Rin [AB], Qin [BC] , Sin [CD] $.
I have to show that $P, R, Q, S $ are on a circle.
I tried to prove that $m (angle P)+ m (angle R)=180$.
geometry euclidean-geometry circle quadrilateral
add a comment |
up vote
1
down vote
favorite
Let $ABCD $ a paralelogram and $H $ the hortocenter of $triangle ABC $.
Let $PQ $ , $RS $ trough $H $ s.t. $PQ|| AB $ and $RS||BC $ and $Pin [DA], Rin [AB], Qin [BC] , Sin [CD] $.
I have to show that $P, R, Q, S $ are on a circle.
I tried to prove that $m (angle P)+ m (angle R)=180$.
geometry euclidean-geometry circle quadrilateral
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $ABCD $ a paralelogram and $H $ the hortocenter of $triangle ABC $.
Let $PQ $ , $RS $ trough $H $ s.t. $PQ|| AB $ and $RS||BC $ and $Pin [DA], Rin [AB], Qin [BC] , Sin [CD] $.
I have to show that $P, R, Q, S $ are on a circle.
I tried to prove that $m (angle P)+ m (angle R)=180$.
geometry euclidean-geometry circle quadrilateral
Let $ABCD $ a paralelogram and $H $ the hortocenter of $triangle ABC $.
Let $PQ $ , $RS $ trough $H $ s.t. $PQ|| AB $ and $RS||BC $ and $Pin [DA], Rin [AB], Qin [BC] , Sin [CD] $.
I have to show that $P, R, Q, S $ are on a circle.
I tried to prove that $m (angle P)+ m (angle R)=180$.
geometry euclidean-geometry circle quadrilateral
geometry euclidean-geometry circle quadrilateral
edited Nov 16 at 12:37
Batominovski
31.8k23189
31.8k23189
asked Nov 16 at 11:58
rafa
544212
544212
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
If $angle ABC=frac{pi}{2}$, then $ABCD$ is a rectangle, and $H=B$. Clearly, we then have $P=A$, $S=C$, and $R=Q=B$, so the points $P$, $Q$, $R$, and $S$ do indeed lie on a circle. If $angle ACB=frac{pi}{2}$, then $H=C$, so $P=D$, $Q=S=C$, and $R=B$. Thus, $P$, $Q$, $R$, and $S$ are again concyclic. If $angle BAC=frac{pi}{2}$, then $H=A$, and so $P=R=A$, $Q=B$, and $S=D$. That is, $P$, $Q$, $R$, and $S$ lie on a single circle. From now on, we assume that $ABC$ is not a right triangle, so that $Hnotin{A,B,C}$.
Project $H$ (orthogonally) onto $BC$ and $AB$ at $X$ and $Y$, respectively. Note that the triangles $HAP$, $HXQ$, $HCS$, and $HXR$ are similar triangles. That is,
$$frac{HP}{HS}=frac{HA}{HC}text{ and }frac{HQ}{HR}=frac{HX}{HY},.$$
Thus,
$$frac{HPcdot HQ}{HScdot HR}=frac{HAcdot HX}{HCcdot HY},.$$
As $angle AXC=angle HXC=frac{pi}{2}=angle HYA=angle CYA$, the quadrilateral $AYXC$ is cyclic, so
$$HCcdot HX=HCcdot HY$$
by the Power-of-Point Theorem. This means
$$frac{HPcdot HQ}{HScdot HR}=frac{HAcdot HX}{HCcdot HY}=1,,$$
or $$HPcdot HQ=HScdot HR,.$$
By the converse of the Power-of-Point Theorem, we conclude that $PRQS$ is a cyclic quadrilateral.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
If $angle ABC=frac{pi}{2}$, then $ABCD$ is a rectangle, and $H=B$. Clearly, we then have $P=A$, $S=C$, and $R=Q=B$, so the points $P$, $Q$, $R$, and $S$ do indeed lie on a circle. If $angle ACB=frac{pi}{2}$, then $H=C$, so $P=D$, $Q=S=C$, and $R=B$. Thus, $P$, $Q$, $R$, and $S$ are again concyclic. If $angle BAC=frac{pi}{2}$, then $H=A$, and so $P=R=A$, $Q=B$, and $S=D$. That is, $P$, $Q$, $R$, and $S$ lie on a single circle. From now on, we assume that $ABC$ is not a right triangle, so that $Hnotin{A,B,C}$.
Project $H$ (orthogonally) onto $BC$ and $AB$ at $X$ and $Y$, respectively. Note that the triangles $HAP$, $HXQ$, $HCS$, and $HXR$ are similar triangles. That is,
$$frac{HP}{HS}=frac{HA}{HC}text{ and }frac{HQ}{HR}=frac{HX}{HY},.$$
Thus,
$$frac{HPcdot HQ}{HScdot HR}=frac{HAcdot HX}{HCcdot HY},.$$
As $angle AXC=angle HXC=frac{pi}{2}=angle HYA=angle CYA$, the quadrilateral $AYXC$ is cyclic, so
$$HCcdot HX=HCcdot HY$$
by the Power-of-Point Theorem. This means
$$frac{HPcdot HQ}{HScdot HR}=frac{HAcdot HX}{HCcdot HY}=1,,$$
or $$HPcdot HQ=HScdot HR,.$$
By the converse of the Power-of-Point Theorem, we conclude that $PRQS$ is a cyclic quadrilateral.
add a comment |
up vote
1
down vote
accepted
If $angle ABC=frac{pi}{2}$, then $ABCD$ is a rectangle, and $H=B$. Clearly, we then have $P=A$, $S=C$, and $R=Q=B$, so the points $P$, $Q$, $R$, and $S$ do indeed lie on a circle. If $angle ACB=frac{pi}{2}$, then $H=C$, so $P=D$, $Q=S=C$, and $R=B$. Thus, $P$, $Q$, $R$, and $S$ are again concyclic. If $angle BAC=frac{pi}{2}$, then $H=A$, and so $P=R=A$, $Q=B$, and $S=D$. That is, $P$, $Q$, $R$, and $S$ lie on a single circle. From now on, we assume that $ABC$ is not a right triangle, so that $Hnotin{A,B,C}$.
Project $H$ (orthogonally) onto $BC$ and $AB$ at $X$ and $Y$, respectively. Note that the triangles $HAP$, $HXQ$, $HCS$, and $HXR$ are similar triangles. That is,
$$frac{HP}{HS}=frac{HA}{HC}text{ and }frac{HQ}{HR}=frac{HX}{HY},.$$
Thus,
$$frac{HPcdot HQ}{HScdot HR}=frac{HAcdot HX}{HCcdot HY},.$$
As $angle AXC=angle HXC=frac{pi}{2}=angle HYA=angle CYA$, the quadrilateral $AYXC$ is cyclic, so
$$HCcdot HX=HCcdot HY$$
by the Power-of-Point Theorem. This means
$$frac{HPcdot HQ}{HScdot HR}=frac{HAcdot HX}{HCcdot HY}=1,,$$
or $$HPcdot HQ=HScdot HR,.$$
By the converse of the Power-of-Point Theorem, we conclude that $PRQS$ is a cyclic quadrilateral.
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
If $angle ABC=frac{pi}{2}$, then $ABCD$ is a rectangle, and $H=B$. Clearly, we then have $P=A$, $S=C$, and $R=Q=B$, so the points $P$, $Q$, $R$, and $S$ do indeed lie on a circle. If $angle ACB=frac{pi}{2}$, then $H=C$, so $P=D$, $Q=S=C$, and $R=B$. Thus, $P$, $Q$, $R$, and $S$ are again concyclic. If $angle BAC=frac{pi}{2}$, then $H=A$, and so $P=R=A$, $Q=B$, and $S=D$. That is, $P$, $Q$, $R$, and $S$ lie on a single circle. From now on, we assume that $ABC$ is not a right triangle, so that $Hnotin{A,B,C}$.
Project $H$ (orthogonally) onto $BC$ and $AB$ at $X$ and $Y$, respectively. Note that the triangles $HAP$, $HXQ$, $HCS$, and $HXR$ are similar triangles. That is,
$$frac{HP}{HS}=frac{HA}{HC}text{ and }frac{HQ}{HR}=frac{HX}{HY},.$$
Thus,
$$frac{HPcdot HQ}{HScdot HR}=frac{HAcdot HX}{HCcdot HY},.$$
As $angle AXC=angle HXC=frac{pi}{2}=angle HYA=angle CYA$, the quadrilateral $AYXC$ is cyclic, so
$$HCcdot HX=HCcdot HY$$
by the Power-of-Point Theorem. This means
$$frac{HPcdot HQ}{HScdot HR}=frac{HAcdot HX}{HCcdot HY}=1,,$$
or $$HPcdot HQ=HScdot HR,.$$
By the converse of the Power-of-Point Theorem, we conclude that $PRQS$ is a cyclic quadrilateral.
If $angle ABC=frac{pi}{2}$, then $ABCD$ is a rectangle, and $H=B$. Clearly, we then have $P=A$, $S=C$, and $R=Q=B$, so the points $P$, $Q$, $R$, and $S$ do indeed lie on a circle. If $angle ACB=frac{pi}{2}$, then $H=C$, so $P=D$, $Q=S=C$, and $R=B$. Thus, $P$, $Q$, $R$, and $S$ are again concyclic. If $angle BAC=frac{pi}{2}$, then $H=A$, and so $P=R=A$, $Q=B$, and $S=D$. That is, $P$, $Q$, $R$, and $S$ lie on a single circle. From now on, we assume that $ABC$ is not a right triangle, so that $Hnotin{A,B,C}$.
Project $H$ (orthogonally) onto $BC$ and $AB$ at $X$ and $Y$, respectively. Note that the triangles $HAP$, $HXQ$, $HCS$, and $HXR$ are similar triangles. That is,
$$frac{HP}{HS}=frac{HA}{HC}text{ and }frac{HQ}{HR}=frac{HX}{HY},.$$
Thus,
$$frac{HPcdot HQ}{HScdot HR}=frac{HAcdot HX}{HCcdot HY},.$$
As $angle AXC=angle HXC=frac{pi}{2}=angle HYA=angle CYA$, the quadrilateral $AYXC$ is cyclic, so
$$HCcdot HX=HCcdot HY$$
by the Power-of-Point Theorem. This means
$$frac{HPcdot HQ}{HScdot HR}=frac{HAcdot HX}{HCcdot HY}=1,,$$
or $$HPcdot HQ=HScdot HR,.$$
By the converse of the Power-of-Point Theorem, we conclude that $PRQS$ is a cyclic quadrilateral.
edited Nov 16 at 12:43
answered Nov 16 at 12:36
Batominovski
31.8k23189
31.8k23189
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001054%2fi-have-to-show-that-p-r-q-s-are-on-a-circle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown