proof (Legendre polynomial )
up vote
0
down vote
favorite
I'm stuck, couldn't figure it out. I appreciate your help.
Show that :
$$frac{1}{2} ln left |frac{1+x}{1-x} right |=sum_{n text { odd}} frac{(2n+1)}{n(n+1)}mathcal {P_n(x)}$$
sequences-and-series differential-equations legendre-polynomials
add a comment |
up vote
0
down vote
favorite
I'm stuck, couldn't figure it out. I appreciate your help.
Show that :
$$frac{1}{2} ln left |frac{1+x}{1-x} right |=sum_{n text { odd}} frac{(2n+1)}{n(n+1)}mathcal {P_n(x)}$$
sequences-and-series differential-equations legendre-polynomials
Hi hiery. Please type out your question, and your attempts using MathJax.
– Chickenmancer
Nov 14 at 23:48
Do you mean $P_n(x)$?
– marty cohen
Nov 14 at 23:58
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm stuck, couldn't figure it out. I appreciate your help.
Show that :
$$frac{1}{2} ln left |frac{1+x}{1-x} right |=sum_{n text { odd}} frac{(2n+1)}{n(n+1)}mathcal {P_n(x)}$$
sequences-and-series differential-equations legendre-polynomials
I'm stuck, couldn't figure it out. I appreciate your help.
Show that :
$$frac{1}{2} ln left |frac{1+x}{1-x} right |=sum_{n text { odd}} frac{(2n+1)}{n(n+1)}mathcal {P_n(x)}$$
sequences-and-series differential-equations legendre-polynomials
sequences-and-series differential-equations legendre-polynomials
edited Nov 15 at 0:04
Isham
12.7k3929
12.7k3929
asked Nov 14 at 23:45
hiery
183
183
Hi hiery. Please type out your question, and your attempts using MathJax.
– Chickenmancer
Nov 14 at 23:48
Do you mean $P_n(x)$?
– marty cohen
Nov 14 at 23:58
add a comment |
Hi hiery. Please type out your question, and your attempts using MathJax.
– Chickenmancer
Nov 14 at 23:48
Do you mean $P_n(x)$?
– marty cohen
Nov 14 at 23:58
Hi hiery. Please type out your question, and your attempts using MathJax.
– Chickenmancer
Nov 14 at 23:48
Hi hiery. Please type out your question, and your attempts using MathJax.
– Chickenmancer
Nov 14 at 23:48
Do you mean $P_n(x)$?
– marty cohen
Nov 14 at 23:58
Do you mean $P_n(x)$?
– marty cohen
Nov 14 at 23:58
add a comment |
1 Answer
1
active
oldest
votes
up vote
3
down vote
accepted
The $n$-th order Legendre polynomial $P_n$ is even if $n$ is even and odd if $n$ is odd, and these satisfy $LP_n = n(n+1)P_n$, where
$$
Lf = -frac{d}{dx}left((1-x^2)frac{df}{dx}right).
$$
The function $Q_0 = frac{1}{2}lnleft|frac{1+x}{1-x}right|$ is the second classical solution of $Lf=0$, but it does not qualify as an eigenfunction in the classical sense because classical solutions must be bounded near $x=pm 1$. The normalized $P_n$ form an orthonormal basis of $L^2(-1,1)$, which allows the expansion
$$
Q_0(x) = sum_{n=0}^{infty}langle Q_0,P_nrangle P_n.
$$
The Lagrange identity gives
begin{align}
&n(n+1)langle Q_0,P_nrangle \
& =langle Q_0,LP_nrangle \
& = langle Q_0,LP_nrangle-langle LQ_0,P_nrangle \
& = int_{-1}^{1}left(frac{d}{dx}(1-x^2)frac{dQ_0}{dx}right)P_n
-frac{d}{dx}left((1-x^2)frac{dP_n}{dx}right)Q_0dx \
& = int_{-1}^{1}frac{d}{dx}left((1-x^2)left{frac{dQ_0}{dx}P_n-Q_0frac{dP_n}{dx}right}right)dx \
& = (1-x^2)(Q_0' P_n-Q_0P_n')|_{-1}^{1} \
& = (1-x^2)Q_0' P_n|_{-1}^{1}.
end{align}
And
$$
Q_0' = frac{1}{2}left[frac{1}{1+x}+frac{1}{1-x}right]=frac{1}{1-x^2}.
$$
Therefore,
$$
n(n+1)langle Q_0,P_nrangle = P_n|_{-1}^{1}.
$$
Therefore,
$$
Q_0(x) = sum_{n=0}^{infty}frac{P_n(1)-P_n(-1)}{n(n+1)}P_n(x) \
= sum_{n mbox{ odd}}frac{2P_n(1)}{n(n+1)}P_n(x).
$$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
The $n$-th order Legendre polynomial $P_n$ is even if $n$ is even and odd if $n$ is odd, and these satisfy $LP_n = n(n+1)P_n$, where
$$
Lf = -frac{d}{dx}left((1-x^2)frac{df}{dx}right).
$$
The function $Q_0 = frac{1}{2}lnleft|frac{1+x}{1-x}right|$ is the second classical solution of $Lf=0$, but it does not qualify as an eigenfunction in the classical sense because classical solutions must be bounded near $x=pm 1$. The normalized $P_n$ form an orthonormal basis of $L^2(-1,1)$, which allows the expansion
$$
Q_0(x) = sum_{n=0}^{infty}langle Q_0,P_nrangle P_n.
$$
The Lagrange identity gives
begin{align}
&n(n+1)langle Q_0,P_nrangle \
& =langle Q_0,LP_nrangle \
& = langle Q_0,LP_nrangle-langle LQ_0,P_nrangle \
& = int_{-1}^{1}left(frac{d}{dx}(1-x^2)frac{dQ_0}{dx}right)P_n
-frac{d}{dx}left((1-x^2)frac{dP_n}{dx}right)Q_0dx \
& = int_{-1}^{1}frac{d}{dx}left((1-x^2)left{frac{dQ_0}{dx}P_n-Q_0frac{dP_n}{dx}right}right)dx \
& = (1-x^2)(Q_0' P_n-Q_0P_n')|_{-1}^{1} \
& = (1-x^2)Q_0' P_n|_{-1}^{1}.
end{align}
And
$$
Q_0' = frac{1}{2}left[frac{1}{1+x}+frac{1}{1-x}right]=frac{1}{1-x^2}.
$$
Therefore,
$$
n(n+1)langle Q_0,P_nrangle = P_n|_{-1}^{1}.
$$
Therefore,
$$
Q_0(x) = sum_{n=0}^{infty}frac{P_n(1)-P_n(-1)}{n(n+1)}P_n(x) \
= sum_{n mbox{ odd}}frac{2P_n(1)}{n(n+1)}P_n(x).
$$
add a comment |
up vote
3
down vote
accepted
The $n$-th order Legendre polynomial $P_n$ is even if $n$ is even and odd if $n$ is odd, and these satisfy $LP_n = n(n+1)P_n$, where
$$
Lf = -frac{d}{dx}left((1-x^2)frac{df}{dx}right).
$$
The function $Q_0 = frac{1}{2}lnleft|frac{1+x}{1-x}right|$ is the second classical solution of $Lf=0$, but it does not qualify as an eigenfunction in the classical sense because classical solutions must be bounded near $x=pm 1$. The normalized $P_n$ form an orthonormal basis of $L^2(-1,1)$, which allows the expansion
$$
Q_0(x) = sum_{n=0}^{infty}langle Q_0,P_nrangle P_n.
$$
The Lagrange identity gives
begin{align}
&n(n+1)langle Q_0,P_nrangle \
& =langle Q_0,LP_nrangle \
& = langle Q_0,LP_nrangle-langle LQ_0,P_nrangle \
& = int_{-1}^{1}left(frac{d}{dx}(1-x^2)frac{dQ_0}{dx}right)P_n
-frac{d}{dx}left((1-x^2)frac{dP_n}{dx}right)Q_0dx \
& = int_{-1}^{1}frac{d}{dx}left((1-x^2)left{frac{dQ_0}{dx}P_n-Q_0frac{dP_n}{dx}right}right)dx \
& = (1-x^2)(Q_0' P_n-Q_0P_n')|_{-1}^{1} \
& = (1-x^2)Q_0' P_n|_{-1}^{1}.
end{align}
And
$$
Q_0' = frac{1}{2}left[frac{1}{1+x}+frac{1}{1-x}right]=frac{1}{1-x^2}.
$$
Therefore,
$$
n(n+1)langle Q_0,P_nrangle = P_n|_{-1}^{1}.
$$
Therefore,
$$
Q_0(x) = sum_{n=0}^{infty}frac{P_n(1)-P_n(-1)}{n(n+1)}P_n(x) \
= sum_{n mbox{ odd}}frac{2P_n(1)}{n(n+1)}P_n(x).
$$
add a comment |
up vote
3
down vote
accepted
up vote
3
down vote
accepted
The $n$-th order Legendre polynomial $P_n$ is even if $n$ is even and odd if $n$ is odd, and these satisfy $LP_n = n(n+1)P_n$, where
$$
Lf = -frac{d}{dx}left((1-x^2)frac{df}{dx}right).
$$
The function $Q_0 = frac{1}{2}lnleft|frac{1+x}{1-x}right|$ is the second classical solution of $Lf=0$, but it does not qualify as an eigenfunction in the classical sense because classical solutions must be bounded near $x=pm 1$. The normalized $P_n$ form an orthonormal basis of $L^2(-1,1)$, which allows the expansion
$$
Q_0(x) = sum_{n=0}^{infty}langle Q_0,P_nrangle P_n.
$$
The Lagrange identity gives
begin{align}
&n(n+1)langle Q_0,P_nrangle \
& =langle Q_0,LP_nrangle \
& = langle Q_0,LP_nrangle-langle LQ_0,P_nrangle \
& = int_{-1}^{1}left(frac{d}{dx}(1-x^2)frac{dQ_0}{dx}right)P_n
-frac{d}{dx}left((1-x^2)frac{dP_n}{dx}right)Q_0dx \
& = int_{-1}^{1}frac{d}{dx}left((1-x^2)left{frac{dQ_0}{dx}P_n-Q_0frac{dP_n}{dx}right}right)dx \
& = (1-x^2)(Q_0' P_n-Q_0P_n')|_{-1}^{1} \
& = (1-x^2)Q_0' P_n|_{-1}^{1}.
end{align}
And
$$
Q_0' = frac{1}{2}left[frac{1}{1+x}+frac{1}{1-x}right]=frac{1}{1-x^2}.
$$
Therefore,
$$
n(n+1)langle Q_0,P_nrangle = P_n|_{-1}^{1}.
$$
Therefore,
$$
Q_0(x) = sum_{n=0}^{infty}frac{P_n(1)-P_n(-1)}{n(n+1)}P_n(x) \
= sum_{n mbox{ odd}}frac{2P_n(1)}{n(n+1)}P_n(x).
$$
The $n$-th order Legendre polynomial $P_n$ is even if $n$ is even and odd if $n$ is odd, and these satisfy $LP_n = n(n+1)P_n$, where
$$
Lf = -frac{d}{dx}left((1-x^2)frac{df}{dx}right).
$$
The function $Q_0 = frac{1}{2}lnleft|frac{1+x}{1-x}right|$ is the second classical solution of $Lf=0$, but it does not qualify as an eigenfunction in the classical sense because classical solutions must be bounded near $x=pm 1$. The normalized $P_n$ form an orthonormal basis of $L^2(-1,1)$, which allows the expansion
$$
Q_0(x) = sum_{n=0}^{infty}langle Q_0,P_nrangle P_n.
$$
The Lagrange identity gives
begin{align}
&n(n+1)langle Q_0,P_nrangle \
& =langle Q_0,LP_nrangle \
& = langle Q_0,LP_nrangle-langle LQ_0,P_nrangle \
& = int_{-1}^{1}left(frac{d}{dx}(1-x^2)frac{dQ_0}{dx}right)P_n
-frac{d}{dx}left((1-x^2)frac{dP_n}{dx}right)Q_0dx \
& = int_{-1}^{1}frac{d}{dx}left((1-x^2)left{frac{dQ_0}{dx}P_n-Q_0frac{dP_n}{dx}right}right)dx \
& = (1-x^2)(Q_0' P_n-Q_0P_n')|_{-1}^{1} \
& = (1-x^2)Q_0' P_n|_{-1}^{1}.
end{align}
And
$$
Q_0' = frac{1}{2}left[frac{1}{1+x}+frac{1}{1-x}right]=frac{1}{1-x^2}.
$$
Therefore,
$$
n(n+1)langle Q_0,P_nrangle = P_n|_{-1}^{1}.
$$
Therefore,
$$
Q_0(x) = sum_{n=0}^{infty}frac{P_n(1)-P_n(-1)}{n(n+1)}P_n(x) \
= sum_{n mbox{ odd}}frac{2P_n(1)}{n(n+1)}P_n(x).
$$
edited Nov 15 at 4:19
answered Nov 15 at 4:12
DisintegratingByParts
57.6k42376
57.6k42376
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998981%2fproof-legendre-polynomial%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Hi hiery. Please type out your question, and your attempts using MathJax.
– Chickenmancer
Nov 14 at 23:48
Do you mean $P_n(x)$?
– marty cohen
Nov 14 at 23:58