proof (Legendre polynomial )











up vote
0
down vote

favorite












I'm stuck, couldn't figure it out. I appreciate your help.



Show that :
$$frac{1}{2} ln left |frac{1+x}{1-x} right |=sum_{n text { odd}} frac{(2n+1)}{n(n+1)}mathcal {P_n(x)}$$










share|cite|improve this question
























  • Hi hiery. Please type out your question, and your attempts using MathJax.
    – Chickenmancer
    Nov 14 at 23:48










  • Do you mean $P_n(x)$?
    – marty cohen
    Nov 14 at 23:58















up vote
0
down vote

favorite












I'm stuck, couldn't figure it out. I appreciate your help.



Show that :
$$frac{1}{2} ln left |frac{1+x}{1-x} right |=sum_{n text { odd}} frac{(2n+1)}{n(n+1)}mathcal {P_n(x)}$$










share|cite|improve this question
























  • Hi hiery. Please type out your question, and your attempts using MathJax.
    – Chickenmancer
    Nov 14 at 23:48










  • Do you mean $P_n(x)$?
    – marty cohen
    Nov 14 at 23:58













up vote
0
down vote

favorite









up vote
0
down vote

favorite











I'm stuck, couldn't figure it out. I appreciate your help.



Show that :
$$frac{1}{2} ln left |frac{1+x}{1-x} right |=sum_{n text { odd}} frac{(2n+1)}{n(n+1)}mathcal {P_n(x)}$$










share|cite|improve this question















I'm stuck, couldn't figure it out. I appreciate your help.



Show that :
$$frac{1}{2} ln left |frac{1+x}{1-x} right |=sum_{n text { odd}} frac{(2n+1)}{n(n+1)}mathcal {P_n(x)}$$







sequences-and-series differential-equations legendre-polynomials






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 15 at 0:04









Isham

12.7k3929




12.7k3929










asked Nov 14 at 23:45









hiery

183




183












  • Hi hiery. Please type out your question, and your attempts using MathJax.
    – Chickenmancer
    Nov 14 at 23:48










  • Do you mean $P_n(x)$?
    – marty cohen
    Nov 14 at 23:58


















  • Hi hiery. Please type out your question, and your attempts using MathJax.
    – Chickenmancer
    Nov 14 at 23:48










  • Do you mean $P_n(x)$?
    – marty cohen
    Nov 14 at 23:58
















Hi hiery. Please type out your question, and your attempts using MathJax.
– Chickenmancer
Nov 14 at 23:48




Hi hiery. Please type out your question, and your attempts using MathJax.
– Chickenmancer
Nov 14 at 23:48












Do you mean $P_n(x)$?
– marty cohen
Nov 14 at 23:58




Do you mean $P_n(x)$?
– marty cohen
Nov 14 at 23:58










1 Answer
1






active

oldest

votes

















up vote
3
down vote



accepted










The $n$-th order Legendre polynomial $P_n$ is even if $n$ is even and odd if $n$ is odd, and these satisfy $LP_n = n(n+1)P_n$, where
$$
Lf = -frac{d}{dx}left((1-x^2)frac{df}{dx}right).
$$

The function $Q_0 = frac{1}{2}lnleft|frac{1+x}{1-x}right|$ is the second classical solution of $Lf=0$, but it does not qualify as an eigenfunction in the classical sense because classical solutions must be bounded near $x=pm 1$. The normalized $P_n$ form an orthonormal basis of $L^2(-1,1)$, which allows the expansion
$$
Q_0(x) = sum_{n=0}^{infty}langle Q_0,P_nrangle P_n.
$$

The Lagrange identity gives
begin{align}
&n(n+1)langle Q_0,P_nrangle \
& =langle Q_0,LP_nrangle \
& = langle Q_0,LP_nrangle-langle LQ_0,P_nrangle \
& = int_{-1}^{1}left(frac{d}{dx}(1-x^2)frac{dQ_0}{dx}right)P_n
-frac{d}{dx}left((1-x^2)frac{dP_n}{dx}right)Q_0dx \
& = int_{-1}^{1}frac{d}{dx}left((1-x^2)left{frac{dQ_0}{dx}P_n-Q_0frac{dP_n}{dx}right}right)dx \
& = (1-x^2)(Q_0' P_n-Q_0P_n')|_{-1}^{1} \
& = (1-x^2)Q_0' P_n|_{-1}^{1}.
end{align}

And
$$
Q_0' = frac{1}{2}left[frac{1}{1+x}+frac{1}{1-x}right]=frac{1}{1-x^2}.
$$

Therefore,
$$
n(n+1)langle Q_0,P_nrangle = P_n|_{-1}^{1}.
$$

Therefore,
$$
Q_0(x) = sum_{n=0}^{infty}frac{P_n(1)-P_n(-1)}{n(n+1)}P_n(x) \
= sum_{n mbox{ odd}}frac{2P_n(1)}{n(n+1)}P_n(x).
$$






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998981%2fproof-legendre-polynomial%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    3
    down vote



    accepted










    The $n$-th order Legendre polynomial $P_n$ is even if $n$ is even and odd if $n$ is odd, and these satisfy $LP_n = n(n+1)P_n$, where
    $$
    Lf = -frac{d}{dx}left((1-x^2)frac{df}{dx}right).
    $$

    The function $Q_0 = frac{1}{2}lnleft|frac{1+x}{1-x}right|$ is the second classical solution of $Lf=0$, but it does not qualify as an eigenfunction in the classical sense because classical solutions must be bounded near $x=pm 1$. The normalized $P_n$ form an orthonormal basis of $L^2(-1,1)$, which allows the expansion
    $$
    Q_0(x) = sum_{n=0}^{infty}langle Q_0,P_nrangle P_n.
    $$

    The Lagrange identity gives
    begin{align}
    &n(n+1)langle Q_0,P_nrangle \
    & =langle Q_0,LP_nrangle \
    & = langle Q_0,LP_nrangle-langle LQ_0,P_nrangle \
    & = int_{-1}^{1}left(frac{d}{dx}(1-x^2)frac{dQ_0}{dx}right)P_n
    -frac{d}{dx}left((1-x^2)frac{dP_n}{dx}right)Q_0dx \
    & = int_{-1}^{1}frac{d}{dx}left((1-x^2)left{frac{dQ_0}{dx}P_n-Q_0frac{dP_n}{dx}right}right)dx \
    & = (1-x^2)(Q_0' P_n-Q_0P_n')|_{-1}^{1} \
    & = (1-x^2)Q_0' P_n|_{-1}^{1}.
    end{align}

    And
    $$
    Q_0' = frac{1}{2}left[frac{1}{1+x}+frac{1}{1-x}right]=frac{1}{1-x^2}.
    $$

    Therefore,
    $$
    n(n+1)langle Q_0,P_nrangle = P_n|_{-1}^{1}.
    $$

    Therefore,
    $$
    Q_0(x) = sum_{n=0}^{infty}frac{P_n(1)-P_n(-1)}{n(n+1)}P_n(x) \
    = sum_{n mbox{ odd}}frac{2P_n(1)}{n(n+1)}P_n(x).
    $$






    share|cite|improve this answer



























      up vote
      3
      down vote



      accepted










      The $n$-th order Legendre polynomial $P_n$ is even if $n$ is even and odd if $n$ is odd, and these satisfy $LP_n = n(n+1)P_n$, where
      $$
      Lf = -frac{d}{dx}left((1-x^2)frac{df}{dx}right).
      $$

      The function $Q_0 = frac{1}{2}lnleft|frac{1+x}{1-x}right|$ is the second classical solution of $Lf=0$, but it does not qualify as an eigenfunction in the classical sense because classical solutions must be bounded near $x=pm 1$. The normalized $P_n$ form an orthonormal basis of $L^2(-1,1)$, which allows the expansion
      $$
      Q_0(x) = sum_{n=0}^{infty}langle Q_0,P_nrangle P_n.
      $$

      The Lagrange identity gives
      begin{align}
      &n(n+1)langle Q_0,P_nrangle \
      & =langle Q_0,LP_nrangle \
      & = langle Q_0,LP_nrangle-langle LQ_0,P_nrangle \
      & = int_{-1}^{1}left(frac{d}{dx}(1-x^2)frac{dQ_0}{dx}right)P_n
      -frac{d}{dx}left((1-x^2)frac{dP_n}{dx}right)Q_0dx \
      & = int_{-1}^{1}frac{d}{dx}left((1-x^2)left{frac{dQ_0}{dx}P_n-Q_0frac{dP_n}{dx}right}right)dx \
      & = (1-x^2)(Q_0' P_n-Q_0P_n')|_{-1}^{1} \
      & = (1-x^2)Q_0' P_n|_{-1}^{1}.
      end{align}

      And
      $$
      Q_0' = frac{1}{2}left[frac{1}{1+x}+frac{1}{1-x}right]=frac{1}{1-x^2}.
      $$

      Therefore,
      $$
      n(n+1)langle Q_0,P_nrangle = P_n|_{-1}^{1}.
      $$

      Therefore,
      $$
      Q_0(x) = sum_{n=0}^{infty}frac{P_n(1)-P_n(-1)}{n(n+1)}P_n(x) \
      = sum_{n mbox{ odd}}frac{2P_n(1)}{n(n+1)}P_n(x).
      $$






      share|cite|improve this answer

























        up vote
        3
        down vote



        accepted







        up vote
        3
        down vote



        accepted






        The $n$-th order Legendre polynomial $P_n$ is even if $n$ is even and odd if $n$ is odd, and these satisfy $LP_n = n(n+1)P_n$, where
        $$
        Lf = -frac{d}{dx}left((1-x^2)frac{df}{dx}right).
        $$

        The function $Q_0 = frac{1}{2}lnleft|frac{1+x}{1-x}right|$ is the second classical solution of $Lf=0$, but it does not qualify as an eigenfunction in the classical sense because classical solutions must be bounded near $x=pm 1$. The normalized $P_n$ form an orthonormal basis of $L^2(-1,1)$, which allows the expansion
        $$
        Q_0(x) = sum_{n=0}^{infty}langle Q_0,P_nrangle P_n.
        $$

        The Lagrange identity gives
        begin{align}
        &n(n+1)langle Q_0,P_nrangle \
        & =langle Q_0,LP_nrangle \
        & = langle Q_0,LP_nrangle-langle LQ_0,P_nrangle \
        & = int_{-1}^{1}left(frac{d}{dx}(1-x^2)frac{dQ_0}{dx}right)P_n
        -frac{d}{dx}left((1-x^2)frac{dP_n}{dx}right)Q_0dx \
        & = int_{-1}^{1}frac{d}{dx}left((1-x^2)left{frac{dQ_0}{dx}P_n-Q_0frac{dP_n}{dx}right}right)dx \
        & = (1-x^2)(Q_0' P_n-Q_0P_n')|_{-1}^{1} \
        & = (1-x^2)Q_0' P_n|_{-1}^{1}.
        end{align}

        And
        $$
        Q_0' = frac{1}{2}left[frac{1}{1+x}+frac{1}{1-x}right]=frac{1}{1-x^2}.
        $$

        Therefore,
        $$
        n(n+1)langle Q_0,P_nrangle = P_n|_{-1}^{1}.
        $$

        Therefore,
        $$
        Q_0(x) = sum_{n=0}^{infty}frac{P_n(1)-P_n(-1)}{n(n+1)}P_n(x) \
        = sum_{n mbox{ odd}}frac{2P_n(1)}{n(n+1)}P_n(x).
        $$






        share|cite|improve this answer














        The $n$-th order Legendre polynomial $P_n$ is even if $n$ is even and odd if $n$ is odd, and these satisfy $LP_n = n(n+1)P_n$, where
        $$
        Lf = -frac{d}{dx}left((1-x^2)frac{df}{dx}right).
        $$

        The function $Q_0 = frac{1}{2}lnleft|frac{1+x}{1-x}right|$ is the second classical solution of $Lf=0$, but it does not qualify as an eigenfunction in the classical sense because classical solutions must be bounded near $x=pm 1$. The normalized $P_n$ form an orthonormal basis of $L^2(-1,1)$, which allows the expansion
        $$
        Q_0(x) = sum_{n=0}^{infty}langle Q_0,P_nrangle P_n.
        $$

        The Lagrange identity gives
        begin{align}
        &n(n+1)langle Q_0,P_nrangle \
        & =langle Q_0,LP_nrangle \
        & = langle Q_0,LP_nrangle-langle LQ_0,P_nrangle \
        & = int_{-1}^{1}left(frac{d}{dx}(1-x^2)frac{dQ_0}{dx}right)P_n
        -frac{d}{dx}left((1-x^2)frac{dP_n}{dx}right)Q_0dx \
        & = int_{-1}^{1}frac{d}{dx}left((1-x^2)left{frac{dQ_0}{dx}P_n-Q_0frac{dP_n}{dx}right}right)dx \
        & = (1-x^2)(Q_0' P_n-Q_0P_n')|_{-1}^{1} \
        & = (1-x^2)Q_0' P_n|_{-1}^{1}.
        end{align}

        And
        $$
        Q_0' = frac{1}{2}left[frac{1}{1+x}+frac{1}{1-x}right]=frac{1}{1-x^2}.
        $$

        Therefore,
        $$
        n(n+1)langle Q_0,P_nrangle = P_n|_{-1}^{1}.
        $$

        Therefore,
        $$
        Q_0(x) = sum_{n=0}^{infty}frac{P_n(1)-P_n(-1)}{n(n+1)}P_n(x) \
        = sum_{n mbox{ odd}}frac{2P_n(1)}{n(n+1)}P_n(x).
        $$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 15 at 4:19

























        answered Nov 15 at 4:12









        DisintegratingByParts

        57.6k42376




        57.6k42376






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998981%2fproof-legendre-polynomial%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Probability when a professor distributes a quiz and homework assignment to a class of n students.

            Aardman Animations

            Are they similar matrix