Verify that $left|int_{gamma} exp(iz^2)dzright| leq frac{pibig(1-exp(-r^2)big)}{4r}$ where...
$begingroup$
Verify that $$left|int_{gamma} exp(iz^2)dzright| leq frac{pibig(1-exp(-r^2)big)}{4r}$$ where $gamma(t)=re^{it}$, for $0leq t leq pi/4$ and $r > 0$.
I'm stuck. here is my attempt:
$|int_{gamma} e^{icdot z^2}dz|leq int_{gamma} |e^{icdot z^2}|dz=int_{gamma}|(e^{z^2})^i|dz$. As $t > 0$ on $0leq t leq pi/4$.
$Rightarrow|e^{r^2 e^{2it}}|=|e^{r^2}e^{e^{2it}}|>0$
$Rightarrowint_{0}^{pi/4} e^{r^2}e^{2it}rie^{it}dt=e^{r^2}riint_{0}^{pi/4} exp(e^{2it}+it)dt$
Let $alpha=e^{r^2}ri$
$Rightarrow alphaint_{0}^{pi/4}e^{cos2t}e^{icdot sin2t}(cos(t)+icdot sin(t)dt)$
Am I on track?
integration complex-analysis contour-integration integral-inequality holomorphic-functions
$endgroup$
add a comment |
$begingroup$
Verify that $$left|int_{gamma} exp(iz^2)dzright| leq frac{pibig(1-exp(-r^2)big)}{4r}$$ where $gamma(t)=re^{it}$, for $0leq t leq pi/4$ and $r > 0$.
I'm stuck. here is my attempt:
$|int_{gamma} e^{icdot z^2}dz|leq int_{gamma} |e^{icdot z^2}|dz=int_{gamma}|(e^{z^2})^i|dz$. As $t > 0$ on $0leq t leq pi/4$.
$Rightarrow|e^{r^2 e^{2it}}|=|e^{r^2}e^{e^{2it}}|>0$
$Rightarrowint_{0}^{pi/4} e^{r^2}e^{2it}rie^{it}dt=e^{r^2}riint_{0}^{pi/4} exp(e^{2it}+it)dt$
Let $alpha=e^{r^2}ri$
$Rightarrow alphaint_{0}^{pi/4}e^{cos2t}e^{icdot sin2t}(cos(t)+icdot sin(t)dt)$
Am I on track?
integration complex-analysis contour-integration integral-inequality holomorphic-functions
$endgroup$
1
$begingroup$
What is $sen(t)$? Did you mean to write $sin(t)$?
$endgroup$
– LoveTooNap29
Jan 3 at 19:23
$begingroup$
yeah, I corrected that. tks
$endgroup$
– Lincon Ribeiro
Jan 3 at 19:25
1
$begingroup$
Hints: $|e^{i(x+iy)^2}|=e^{-2xy}$ and $sinphigeqslant 2phi/pi$ for $0leqslantphileqslantpi/2$.
$endgroup$
– metamorphy
Jan 4 at 2:29
add a comment |
$begingroup$
Verify that $$left|int_{gamma} exp(iz^2)dzright| leq frac{pibig(1-exp(-r^2)big)}{4r}$$ where $gamma(t)=re^{it}$, for $0leq t leq pi/4$ and $r > 0$.
I'm stuck. here is my attempt:
$|int_{gamma} e^{icdot z^2}dz|leq int_{gamma} |e^{icdot z^2}|dz=int_{gamma}|(e^{z^2})^i|dz$. As $t > 0$ on $0leq t leq pi/4$.
$Rightarrow|e^{r^2 e^{2it}}|=|e^{r^2}e^{e^{2it}}|>0$
$Rightarrowint_{0}^{pi/4} e^{r^2}e^{2it}rie^{it}dt=e^{r^2}riint_{0}^{pi/4} exp(e^{2it}+it)dt$
Let $alpha=e^{r^2}ri$
$Rightarrow alphaint_{0}^{pi/4}e^{cos2t}e^{icdot sin2t}(cos(t)+icdot sin(t)dt)$
Am I on track?
integration complex-analysis contour-integration integral-inequality holomorphic-functions
$endgroup$
Verify that $$left|int_{gamma} exp(iz^2)dzright| leq frac{pibig(1-exp(-r^2)big)}{4r}$$ where $gamma(t)=re^{it}$, for $0leq t leq pi/4$ and $r > 0$.
I'm stuck. here is my attempt:
$|int_{gamma} e^{icdot z^2}dz|leq int_{gamma} |e^{icdot z^2}|dz=int_{gamma}|(e^{z^2})^i|dz$. As $t > 0$ on $0leq t leq pi/4$.
$Rightarrow|e^{r^2 e^{2it}}|=|e^{r^2}e^{e^{2it}}|>0$
$Rightarrowint_{0}^{pi/4} e^{r^2}e^{2it}rie^{it}dt=e^{r^2}riint_{0}^{pi/4} exp(e^{2it}+it)dt$
Let $alpha=e^{r^2}ri$
$Rightarrow alphaint_{0}^{pi/4}e^{cos2t}e^{icdot sin2t}(cos(t)+icdot sin(t)dt)$
Am I on track?
integration complex-analysis contour-integration integral-inequality holomorphic-functions
integration complex-analysis contour-integration integral-inequality holomorphic-functions
edited Jan 4 at 12:34
Lincon Ribeiro
asked Jan 3 at 19:14
Lincon RibeiroLincon Ribeiro
617
617
1
$begingroup$
What is $sen(t)$? Did you mean to write $sin(t)$?
$endgroup$
– LoveTooNap29
Jan 3 at 19:23
$begingroup$
yeah, I corrected that. tks
$endgroup$
– Lincon Ribeiro
Jan 3 at 19:25
1
$begingroup$
Hints: $|e^{i(x+iy)^2}|=e^{-2xy}$ and $sinphigeqslant 2phi/pi$ for $0leqslantphileqslantpi/2$.
$endgroup$
– metamorphy
Jan 4 at 2:29
add a comment |
1
$begingroup$
What is $sen(t)$? Did you mean to write $sin(t)$?
$endgroup$
– LoveTooNap29
Jan 3 at 19:23
$begingroup$
yeah, I corrected that. tks
$endgroup$
– Lincon Ribeiro
Jan 3 at 19:25
1
$begingroup$
Hints: $|e^{i(x+iy)^2}|=e^{-2xy}$ and $sinphigeqslant 2phi/pi$ for $0leqslantphileqslantpi/2$.
$endgroup$
– metamorphy
Jan 4 at 2:29
1
1
$begingroup$
What is $sen(t)$? Did you mean to write $sin(t)$?
$endgroup$
– LoveTooNap29
Jan 3 at 19:23
$begingroup$
What is $sen(t)$? Did you mean to write $sin(t)$?
$endgroup$
– LoveTooNap29
Jan 3 at 19:23
$begingroup$
yeah, I corrected that. tks
$endgroup$
– Lincon Ribeiro
Jan 3 at 19:25
$begingroup$
yeah, I corrected that. tks
$endgroup$
– Lincon Ribeiro
Jan 3 at 19:25
1
1
$begingroup$
Hints: $|e^{i(x+iy)^2}|=e^{-2xy}$ and $sinphigeqslant 2phi/pi$ for $0leqslantphileqslantpi/2$.
$endgroup$
– metamorphy
Jan 4 at 2:29
$begingroup$
Hints: $|e^{i(x+iy)^2}|=e^{-2xy}$ and $sinphigeqslant 2phi/pi$ for $0leqslantphileqslantpi/2$.
$endgroup$
– metamorphy
Jan 4 at 2:29
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You have
$$ int_gamma e^{iz^2}dz = int_0^{pi/4} e^{ir^2(cos 2t + isin 2t)}ire^{it} dt $$
Taking the magnitude
$$ leftvert int_gamma e^{iz^2}dz rightvert le int_0^{pi/4} leftvert e^{ir^2(cos 2t + isin 2t)}ire^{it} rightvert dt = int_0^{pi/4} re^{-r^2sin 2t} dt $$
Since $sin 2t$ curves upwards on the interval $(0,pi/4)$, it always lies above its secant line from $t=0$ to $t=pi/4$, therefore
$$ sin 2t ge frac{4t}{pi}, quad forall t in left(0,frac{pi}{4}right) $$
And
$$ int_0^{pi/4} re^{-r^2sin 2t} dt le int_0^{pi/4} re^{-4r^2t/pi} dt = frac{pi}{4r}left(1 - e^{-r^2} right) $$
$endgroup$
$begingroup$
@LinconRibeiro Can you remove your check mark? I made a mistake in my answer
$endgroup$
– Dylan
Jan 4 at 12:17
$begingroup$
Ok, done. How did you get that term on the right side of the last inequality $frac {1-e^{-r^2}} {r^2}$? btw, I forgot to add that r must be greater than zero. I don't know if it changes anything.
$endgroup$
– Lincon Ribeiro
Jan 4 at 12:37
1
$begingroup$
I updated my answer. It was simpler than I though.
$endgroup$
– Dylan
Jan 4 at 13:47
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060895%2fverify-that-left-int-gamma-expiz2dz-right-leq-frac-pi-big1-exp%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You have
$$ int_gamma e^{iz^2}dz = int_0^{pi/4} e^{ir^2(cos 2t + isin 2t)}ire^{it} dt $$
Taking the magnitude
$$ leftvert int_gamma e^{iz^2}dz rightvert le int_0^{pi/4} leftvert e^{ir^2(cos 2t + isin 2t)}ire^{it} rightvert dt = int_0^{pi/4} re^{-r^2sin 2t} dt $$
Since $sin 2t$ curves upwards on the interval $(0,pi/4)$, it always lies above its secant line from $t=0$ to $t=pi/4$, therefore
$$ sin 2t ge frac{4t}{pi}, quad forall t in left(0,frac{pi}{4}right) $$
And
$$ int_0^{pi/4} re^{-r^2sin 2t} dt le int_0^{pi/4} re^{-4r^2t/pi} dt = frac{pi}{4r}left(1 - e^{-r^2} right) $$
$endgroup$
$begingroup$
@LinconRibeiro Can you remove your check mark? I made a mistake in my answer
$endgroup$
– Dylan
Jan 4 at 12:17
$begingroup$
Ok, done. How did you get that term on the right side of the last inequality $frac {1-e^{-r^2}} {r^2}$? btw, I forgot to add that r must be greater than zero. I don't know if it changes anything.
$endgroup$
– Lincon Ribeiro
Jan 4 at 12:37
1
$begingroup$
I updated my answer. It was simpler than I though.
$endgroup$
– Dylan
Jan 4 at 13:47
add a comment |
$begingroup$
You have
$$ int_gamma e^{iz^2}dz = int_0^{pi/4} e^{ir^2(cos 2t + isin 2t)}ire^{it} dt $$
Taking the magnitude
$$ leftvert int_gamma e^{iz^2}dz rightvert le int_0^{pi/4} leftvert e^{ir^2(cos 2t + isin 2t)}ire^{it} rightvert dt = int_0^{pi/4} re^{-r^2sin 2t} dt $$
Since $sin 2t$ curves upwards on the interval $(0,pi/4)$, it always lies above its secant line from $t=0$ to $t=pi/4$, therefore
$$ sin 2t ge frac{4t}{pi}, quad forall t in left(0,frac{pi}{4}right) $$
And
$$ int_0^{pi/4} re^{-r^2sin 2t} dt le int_0^{pi/4} re^{-4r^2t/pi} dt = frac{pi}{4r}left(1 - e^{-r^2} right) $$
$endgroup$
$begingroup$
@LinconRibeiro Can you remove your check mark? I made a mistake in my answer
$endgroup$
– Dylan
Jan 4 at 12:17
$begingroup$
Ok, done. How did you get that term on the right side of the last inequality $frac {1-e^{-r^2}} {r^2}$? btw, I forgot to add that r must be greater than zero. I don't know if it changes anything.
$endgroup$
– Lincon Ribeiro
Jan 4 at 12:37
1
$begingroup$
I updated my answer. It was simpler than I though.
$endgroup$
– Dylan
Jan 4 at 13:47
add a comment |
$begingroup$
You have
$$ int_gamma e^{iz^2}dz = int_0^{pi/4} e^{ir^2(cos 2t + isin 2t)}ire^{it} dt $$
Taking the magnitude
$$ leftvert int_gamma e^{iz^2}dz rightvert le int_0^{pi/4} leftvert e^{ir^2(cos 2t + isin 2t)}ire^{it} rightvert dt = int_0^{pi/4} re^{-r^2sin 2t} dt $$
Since $sin 2t$ curves upwards on the interval $(0,pi/4)$, it always lies above its secant line from $t=0$ to $t=pi/4$, therefore
$$ sin 2t ge frac{4t}{pi}, quad forall t in left(0,frac{pi}{4}right) $$
And
$$ int_0^{pi/4} re^{-r^2sin 2t} dt le int_0^{pi/4} re^{-4r^2t/pi} dt = frac{pi}{4r}left(1 - e^{-r^2} right) $$
$endgroup$
You have
$$ int_gamma e^{iz^2}dz = int_0^{pi/4} e^{ir^2(cos 2t + isin 2t)}ire^{it} dt $$
Taking the magnitude
$$ leftvert int_gamma e^{iz^2}dz rightvert le int_0^{pi/4} leftvert e^{ir^2(cos 2t + isin 2t)}ire^{it} rightvert dt = int_0^{pi/4} re^{-r^2sin 2t} dt $$
Since $sin 2t$ curves upwards on the interval $(0,pi/4)$, it always lies above its secant line from $t=0$ to $t=pi/4$, therefore
$$ sin 2t ge frac{4t}{pi}, quad forall t in left(0,frac{pi}{4}right) $$
And
$$ int_0^{pi/4} re^{-r^2sin 2t} dt le int_0^{pi/4} re^{-4r^2t/pi} dt = frac{pi}{4r}left(1 - e^{-r^2} right) $$
edited Jan 4 at 13:52
answered Jan 4 at 9:02
DylanDylan
14.2k31127
14.2k31127
$begingroup$
@LinconRibeiro Can you remove your check mark? I made a mistake in my answer
$endgroup$
– Dylan
Jan 4 at 12:17
$begingroup$
Ok, done. How did you get that term on the right side of the last inequality $frac {1-e^{-r^2}} {r^2}$? btw, I forgot to add that r must be greater than zero. I don't know if it changes anything.
$endgroup$
– Lincon Ribeiro
Jan 4 at 12:37
1
$begingroup$
I updated my answer. It was simpler than I though.
$endgroup$
– Dylan
Jan 4 at 13:47
add a comment |
$begingroup$
@LinconRibeiro Can you remove your check mark? I made a mistake in my answer
$endgroup$
– Dylan
Jan 4 at 12:17
$begingroup$
Ok, done. How did you get that term on the right side of the last inequality $frac {1-e^{-r^2}} {r^2}$? btw, I forgot to add that r must be greater than zero. I don't know if it changes anything.
$endgroup$
– Lincon Ribeiro
Jan 4 at 12:37
1
$begingroup$
I updated my answer. It was simpler than I though.
$endgroup$
– Dylan
Jan 4 at 13:47
$begingroup$
@LinconRibeiro Can you remove your check mark? I made a mistake in my answer
$endgroup$
– Dylan
Jan 4 at 12:17
$begingroup$
@LinconRibeiro Can you remove your check mark? I made a mistake in my answer
$endgroup$
– Dylan
Jan 4 at 12:17
$begingroup$
Ok, done. How did you get that term on the right side of the last inequality $frac {1-e^{-r^2}} {r^2}$? btw, I forgot to add that r must be greater than zero. I don't know if it changes anything.
$endgroup$
– Lincon Ribeiro
Jan 4 at 12:37
$begingroup$
Ok, done. How did you get that term on the right side of the last inequality $frac {1-e^{-r^2}} {r^2}$? btw, I forgot to add that r must be greater than zero. I don't know if it changes anything.
$endgroup$
– Lincon Ribeiro
Jan 4 at 12:37
1
1
$begingroup$
I updated my answer. It was simpler than I though.
$endgroup$
– Dylan
Jan 4 at 13:47
$begingroup$
I updated my answer. It was simpler than I though.
$endgroup$
– Dylan
Jan 4 at 13:47
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060895%2fverify-that-left-int-gamma-expiz2dz-right-leq-frac-pi-big1-exp%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
What is $sen(t)$? Did you mean to write $sin(t)$?
$endgroup$
– LoveTooNap29
Jan 3 at 19:23
$begingroup$
yeah, I corrected that. tks
$endgroup$
– Lincon Ribeiro
Jan 3 at 19:25
1
$begingroup$
Hints: $|e^{i(x+iy)^2}|=e^{-2xy}$ and $sinphigeqslant 2phi/pi$ for $0leqslantphileqslantpi/2$.
$endgroup$
– metamorphy
Jan 4 at 2:29