Hitting time and its distribution
$begingroup$
÷I'm reading an italian book about casual process (Probabilità e modelli aleatori of Enzo Orsingher). At pag 105 there's the probability of the stopping time $T_beta$.
$$P{T_beta leq t}=P{max_{0leq sleq t} B(s) geq beta}=$$
$$=2P{B(t) geq beta} = sqrt{frac{2}{pi}} int_{frac{beta}{sqrt{t}}}^{infty} exp{-frac{w^2}{2}}dw$$
Because the book used the last result :
$$P{T_beta leq t}=P{max_{0leq sleq t} B(s) geq beta}= 2P{B(t) geq beta}$$
Now I don't undersatnd why $T_beta$ has the inverse gaussian density
$$f_{beta}(t)= frac{|beta|}{sqrt{2pi t^3}}expleft{-frac{beta^2}{2t}right}$$
for $t >0$.
Where did it find?
inverse brownian-motion stopping-times
$endgroup$
add a comment |
$begingroup$
÷I'm reading an italian book about casual process (Probabilità e modelli aleatori of Enzo Orsingher). At pag 105 there's the probability of the stopping time $T_beta$.
$$P{T_beta leq t}=P{max_{0leq sleq t} B(s) geq beta}=$$
$$=2P{B(t) geq beta} = sqrt{frac{2}{pi}} int_{frac{beta}{sqrt{t}}}^{infty} exp{-frac{w^2}{2}}dw$$
Because the book used the last result :
$$P{T_beta leq t}=P{max_{0leq sleq t} B(s) geq beta}= 2P{B(t) geq beta}$$
Now I don't undersatnd why $T_beta$ has the inverse gaussian density
$$f_{beta}(t)= frac{|beta|}{sqrt{2pi t^3}}expleft{-frac{beta^2}{2t}right}$$
for $t >0$.
Where did it find?
inverse brownian-motion stopping-times
$endgroup$
1
$begingroup$
Since you know $P(T_betaleqslant t)$, how to deduce the density $f_beta$?
$endgroup$
– Did
Sep 6 '14 at 11:45
$begingroup$
yeah, I didin't derivate respect to t. Now It's clear.
$endgroup$
– Cronos
Sep 6 '14 at 18:15
add a comment |
$begingroup$
÷I'm reading an italian book about casual process (Probabilità e modelli aleatori of Enzo Orsingher). At pag 105 there's the probability of the stopping time $T_beta$.
$$P{T_beta leq t}=P{max_{0leq sleq t} B(s) geq beta}=$$
$$=2P{B(t) geq beta} = sqrt{frac{2}{pi}} int_{frac{beta}{sqrt{t}}}^{infty} exp{-frac{w^2}{2}}dw$$
Because the book used the last result :
$$P{T_beta leq t}=P{max_{0leq sleq t} B(s) geq beta}= 2P{B(t) geq beta}$$
Now I don't undersatnd why $T_beta$ has the inverse gaussian density
$$f_{beta}(t)= frac{|beta|}{sqrt{2pi t^3}}expleft{-frac{beta^2}{2t}right}$$
for $t >0$.
Where did it find?
inverse brownian-motion stopping-times
$endgroup$
÷I'm reading an italian book about casual process (Probabilità e modelli aleatori of Enzo Orsingher). At pag 105 there's the probability of the stopping time $T_beta$.
$$P{T_beta leq t}=P{max_{0leq sleq t} B(s) geq beta}=$$
$$=2P{B(t) geq beta} = sqrt{frac{2}{pi}} int_{frac{beta}{sqrt{t}}}^{infty} exp{-frac{w^2}{2}}dw$$
Because the book used the last result :
$$P{T_beta leq t}=P{max_{0leq sleq t} B(s) geq beta}= 2P{B(t) geq beta}$$
Now I don't undersatnd why $T_beta$ has the inverse gaussian density
$$f_{beta}(t)= frac{|beta|}{sqrt{2pi t^3}}expleft{-frac{beta^2}{2t}right}$$
for $t >0$.
Where did it find?
inverse brownian-motion stopping-times
inverse brownian-motion stopping-times
edited Sep 6 '14 at 10:59
Davide Giraudo
128k17156268
128k17156268
asked Sep 6 '14 at 10:16
CronosCronos
233
233
1
$begingroup$
Since you know $P(T_betaleqslant t)$, how to deduce the density $f_beta$?
$endgroup$
– Did
Sep 6 '14 at 11:45
$begingroup$
yeah, I didin't derivate respect to t. Now It's clear.
$endgroup$
– Cronos
Sep 6 '14 at 18:15
add a comment |
1
$begingroup$
Since you know $P(T_betaleqslant t)$, how to deduce the density $f_beta$?
$endgroup$
– Did
Sep 6 '14 at 11:45
$begingroup$
yeah, I didin't derivate respect to t. Now It's clear.
$endgroup$
– Cronos
Sep 6 '14 at 18:15
1
1
$begingroup$
Since you know $P(T_betaleqslant t)$, how to deduce the density $f_beta$?
$endgroup$
– Did
Sep 6 '14 at 11:45
$begingroup$
Since you know $P(T_betaleqslant t)$, how to deduce the density $f_beta$?
$endgroup$
– Did
Sep 6 '14 at 11:45
$begingroup$
yeah, I didin't derivate respect to t. Now It's clear.
$endgroup$
– Cronos
Sep 6 '14 at 18:15
$begingroup$
yeah, I didin't derivate respect to t. Now It's clear.
$endgroup$
– Cronos
Sep 6 '14 at 18:15
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$P(B(t) > beta) = P(B(t) > beta | T_beta > t ) cdot P(T_beta > t )
+ P(B(t) > beta | T_beta leq t ) cdot P(T_beta leq t ) \
= 0 + frac{1}{2} P(T_beta leq t ) \
Longrightarrow P(T_beta leq t ) = 2 P(B(t) > beta) $.
$ P(B(t) > beta | T_beta leq t ) = 1/2$ because the Brownian motion is symmetric conditioned on the hitting point (independent increase).
So, $P(T_beta leq t ) = 2 P(B(t) > beta) = 2 - 2 P(B(t) leq beta) \
= 2 - 2 P( frac{ B(t)}{ sqrt{t} } leq frac{ beta }{ sqrt{t} } )
= 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) $
where $Phi$ is the CDF of standard Gaussian distribution.
So $f_{T_beta} (t) = frac{d}{d t}( 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) ) $.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f921255%2fhitting-time-and-its-distribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$P(B(t) > beta) = P(B(t) > beta | T_beta > t ) cdot P(T_beta > t )
+ P(B(t) > beta | T_beta leq t ) cdot P(T_beta leq t ) \
= 0 + frac{1}{2} P(T_beta leq t ) \
Longrightarrow P(T_beta leq t ) = 2 P(B(t) > beta) $.
$ P(B(t) > beta | T_beta leq t ) = 1/2$ because the Brownian motion is symmetric conditioned on the hitting point (independent increase).
So, $P(T_beta leq t ) = 2 P(B(t) > beta) = 2 - 2 P(B(t) leq beta) \
= 2 - 2 P( frac{ B(t)}{ sqrt{t} } leq frac{ beta }{ sqrt{t} } )
= 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) $
where $Phi$ is the CDF of standard Gaussian distribution.
So $f_{T_beta} (t) = frac{d}{d t}( 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) ) $.
$endgroup$
add a comment |
$begingroup$
$P(B(t) > beta) = P(B(t) > beta | T_beta > t ) cdot P(T_beta > t )
+ P(B(t) > beta | T_beta leq t ) cdot P(T_beta leq t ) \
= 0 + frac{1}{2} P(T_beta leq t ) \
Longrightarrow P(T_beta leq t ) = 2 P(B(t) > beta) $.
$ P(B(t) > beta | T_beta leq t ) = 1/2$ because the Brownian motion is symmetric conditioned on the hitting point (independent increase).
So, $P(T_beta leq t ) = 2 P(B(t) > beta) = 2 - 2 P(B(t) leq beta) \
= 2 - 2 P( frac{ B(t)}{ sqrt{t} } leq frac{ beta }{ sqrt{t} } )
= 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) $
where $Phi$ is the CDF of standard Gaussian distribution.
So $f_{T_beta} (t) = frac{d}{d t}( 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) ) $.
$endgroup$
add a comment |
$begingroup$
$P(B(t) > beta) = P(B(t) > beta | T_beta > t ) cdot P(T_beta > t )
+ P(B(t) > beta | T_beta leq t ) cdot P(T_beta leq t ) \
= 0 + frac{1}{2} P(T_beta leq t ) \
Longrightarrow P(T_beta leq t ) = 2 P(B(t) > beta) $.
$ P(B(t) > beta | T_beta leq t ) = 1/2$ because the Brownian motion is symmetric conditioned on the hitting point (independent increase).
So, $P(T_beta leq t ) = 2 P(B(t) > beta) = 2 - 2 P(B(t) leq beta) \
= 2 - 2 P( frac{ B(t)}{ sqrt{t} } leq frac{ beta }{ sqrt{t} } )
= 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) $
where $Phi$ is the CDF of standard Gaussian distribution.
So $f_{T_beta} (t) = frac{d}{d t}( 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) ) $.
$endgroup$
$P(B(t) > beta) = P(B(t) > beta | T_beta > t ) cdot P(T_beta > t )
+ P(B(t) > beta | T_beta leq t ) cdot P(T_beta leq t ) \
= 0 + frac{1}{2} P(T_beta leq t ) \
Longrightarrow P(T_beta leq t ) = 2 P(B(t) > beta) $.
$ P(B(t) > beta | T_beta leq t ) = 1/2$ because the Brownian motion is symmetric conditioned on the hitting point (independent increase).
So, $P(T_beta leq t ) = 2 P(B(t) > beta) = 2 - 2 P(B(t) leq beta) \
= 2 - 2 P( frac{ B(t)}{ sqrt{t} } leq frac{ beta }{ sqrt{t} } )
= 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) $
where $Phi$ is the CDF of standard Gaussian distribution.
So $f_{T_beta} (t) = frac{d}{d t}( 2 - 2 Phi (frac{ beta }{ sqrt{t} } ) ) $.
answered Jan 3 at 17:42
Albert ChenAlbert Chen
23027
23027
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f921255%2fhitting-time-and-its-distribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Since you know $P(T_betaleqslant t)$, how to deduce the density $f_beta$?
$endgroup$
– Did
Sep 6 '14 at 11:45
$begingroup$
yeah, I didin't derivate respect to t. Now It's clear.
$endgroup$
– Cronos
Sep 6 '14 at 18:15