Statement of Parseval's theorem for Fourier Transform
$begingroup$
the following is the statement of Parseval's theorem from Wikipedia,
Suppose that $A(x)$ and $B(x)$ are two square integrable (with respect to the Lebesgue measure), complex-valued functions on $mathbb{R}$ of period $2pi$ with Fourier series
$$A(x) = sum_{n=-infty}^{infty} a_n e^{inx} $$
and
$$B(x) = sum_{n=-infty}^{infty} b_n e^{inx} $$
respectively. Then
$$sum_{n=-infty}^{infty}a_n overline{b_n} = frac{1}{2pi} int_{-pi}^{pi}A(x) overline{B(x)} dx$$
where $i$ is the imaginary unit and horizontal bars indicate complex conjugation.
I would like to know if the above statement still hold when $A(x) = sum_{n=-infty}^{infty} a_n e^{-inx} $ and $B(x) = sum_{n=-infty}^{infty} b_n e^{-inx} $. The only changes is the negative in exponential.
fourier-analysis parsevals-identity
$endgroup$
add a comment |
$begingroup$
the following is the statement of Parseval's theorem from Wikipedia,
Suppose that $A(x)$ and $B(x)$ are two square integrable (with respect to the Lebesgue measure), complex-valued functions on $mathbb{R}$ of period $2pi$ with Fourier series
$$A(x) = sum_{n=-infty}^{infty} a_n e^{inx} $$
and
$$B(x) = sum_{n=-infty}^{infty} b_n e^{inx} $$
respectively. Then
$$sum_{n=-infty}^{infty}a_n overline{b_n} = frac{1}{2pi} int_{-pi}^{pi}A(x) overline{B(x)} dx$$
where $i$ is the imaginary unit and horizontal bars indicate complex conjugation.
I would like to know if the above statement still hold when $A(x) = sum_{n=-infty}^{infty} a_n e^{-inx} $ and $B(x) = sum_{n=-infty}^{infty} b_n e^{-inx} $. The only changes is the negative in exponential.
fourier-analysis parsevals-identity
$endgroup$
$begingroup$
Sure. Just re-order the sum by replacing $n$ with $-n$.
$endgroup$
– DisintegratingByParts
Jan 3 at 19:33
add a comment |
$begingroup$
the following is the statement of Parseval's theorem from Wikipedia,
Suppose that $A(x)$ and $B(x)$ are two square integrable (with respect to the Lebesgue measure), complex-valued functions on $mathbb{R}$ of period $2pi$ with Fourier series
$$A(x) = sum_{n=-infty}^{infty} a_n e^{inx} $$
and
$$B(x) = sum_{n=-infty}^{infty} b_n e^{inx} $$
respectively. Then
$$sum_{n=-infty}^{infty}a_n overline{b_n} = frac{1}{2pi} int_{-pi}^{pi}A(x) overline{B(x)} dx$$
where $i$ is the imaginary unit and horizontal bars indicate complex conjugation.
I would like to know if the above statement still hold when $A(x) = sum_{n=-infty}^{infty} a_n e^{-inx} $ and $B(x) = sum_{n=-infty}^{infty} b_n e^{-inx} $. The only changes is the negative in exponential.
fourier-analysis parsevals-identity
$endgroup$
the following is the statement of Parseval's theorem from Wikipedia,
Suppose that $A(x)$ and $B(x)$ are two square integrable (with respect to the Lebesgue measure), complex-valued functions on $mathbb{R}$ of period $2pi$ with Fourier series
$$A(x) = sum_{n=-infty}^{infty} a_n e^{inx} $$
and
$$B(x) = sum_{n=-infty}^{infty} b_n e^{inx} $$
respectively. Then
$$sum_{n=-infty}^{infty}a_n overline{b_n} = frac{1}{2pi} int_{-pi}^{pi}A(x) overline{B(x)} dx$$
where $i$ is the imaginary unit and horizontal bars indicate complex conjugation.
I would like to know if the above statement still hold when $A(x) = sum_{n=-infty}^{infty} a_n e^{-inx} $ and $B(x) = sum_{n=-infty}^{infty} b_n e^{-inx} $. The only changes is the negative in exponential.
fourier-analysis parsevals-identity
fourier-analysis parsevals-identity
asked Jan 3 at 19:26
Mike LMike L
1
1
$begingroup$
Sure. Just re-order the sum by replacing $n$ with $-n$.
$endgroup$
– DisintegratingByParts
Jan 3 at 19:33
add a comment |
$begingroup$
Sure. Just re-order the sum by replacing $n$ with $-n$.
$endgroup$
– DisintegratingByParts
Jan 3 at 19:33
$begingroup$
Sure. Just re-order the sum by replacing $n$ with $-n$.
$endgroup$
– DisintegratingByParts
Jan 3 at 19:33
$begingroup$
Sure. Just re-order the sum by replacing $n$ with $-n$.
$endgroup$
– DisintegratingByParts
Jan 3 at 19:33
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes: a possibility is to work with the functions $widetilde{A}colon xmapsto Aleft(-xright)$ and $widetilde{B}colon xmapsto Bleft(-xright)$ then do the substitution $y=-x$ in the integral.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060905%2fstatement-of-parsevals-theorem-for-fourier-transform%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes: a possibility is to work with the functions $widetilde{A}colon xmapsto Aleft(-xright)$ and $widetilde{B}colon xmapsto Bleft(-xright)$ then do the substitution $y=-x$ in the integral.
$endgroup$
add a comment |
$begingroup$
Yes: a possibility is to work with the functions $widetilde{A}colon xmapsto Aleft(-xright)$ and $widetilde{B}colon xmapsto Bleft(-xright)$ then do the substitution $y=-x$ in the integral.
$endgroup$
add a comment |
$begingroup$
Yes: a possibility is to work with the functions $widetilde{A}colon xmapsto Aleft(-xright)$ and $widetilde{B}colon xmapsto Bleft(-xright)$ then do the substitution $y=-x$ in the integral.
$endgroup$
Yes: a possibility is to work with the functions $widetilde{A}colon xmapsto Aleft(-xright)$ and $widetilde{B}colon xmapsto Bleft(-xright)$ then do the substitution $y=-x$ in the integral.
answered Jan 4 at 16:58
Davide GiraudoDavide Giraudo
128k17156268
128k17156268
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060905%2fstatement-of-parsevals-theorem-for-fourier-transform%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Sure. Just re-order the sum by replacing $n$ with $-n$.
$endgroup$
– DisintegratingByParts
Jan 3 at 19:33