How to evaluate $intfrac{1+x^4}{(1-x^4)^{3/2}}dx$?
$begingroup$
How do I start with evaluating this-
$$intfrac{1+x^4}{(1-x^4)^{3/2}}dx$$
What should be my first attempt at this kind of a problem where-
- The denominator and numerator are of the same degree
- Denominator involves fractional exponent like $3/2$.
Note:I am proficient with all kinds of basic methods of evaluating integrals.
calculus integration indefinite-integrals
$endgroup$
add a comment |
$begingroup$
How do I start with evaluating this-
$$intfrac{1+x^4}{(1-x^4)^{3/2}}dx$$
What should be my first attempt at this kind of a problem where-
- The denominator and numerator are of the same degree
- Denominator involves fractional exponent like $3/2$.
Note:I am proficient with all kinds of basic methods of evaluating integrals.
calculus integration indefinite-integrals
$endgroup$
add a comment |
$begingroup$
How do I start with evaluating this-
$$intfrac{1+x^4}{(1-x^4)^{3/2}}dx$$
What should be my first attempt at this kind of a problem where-
- The denominator and numerator are of the same degree
- Denominator involves fractional exponent like $3/2$.
Note:I am proficient with all kinds of basic methods of evaluating integrals.
calculus integration indefinite-integrals
$endgroup$
How do I start with evaluating this-
$$intfrac{1+x^4}{(1-x^4)^{3/2}}dx$$
What should be my first attempt at this kind of a problem where-
- The denominator and numerator are of the same degree
- Denominator involves fractional exponent like $3/2$.
Note:I am proficient with all kinds of basic methods of evaluating integrals.
calculus integration indefinite-integrals
calculus integration indefinite-integrals
edited Feb 1 at 12:59
Martin Sleziak
44.9k10122275
44.9k10122275
asked Jul 21 '18 at 18:02
tatantatan
5,82262760
5,82262760
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
$$intfrac{1+x^4}{(1-x^4)^{3/2}}dx=intfrac{1+x^4}{(x^{-2}-x^2)^{3/2}x^3}dx=intfrac{x^{-3}+x}{(x^{-2}-x^2)^{3/2}}dx$$ Now guess who's derivative is the numerator?
$endgroup$
3
$begingroup$
Okay... that's magic! But what led to approach the problem in this way?(+1)
$endgroup$
– tatan
Jul 21 '18 at 18:30
5
$begingroup$
Well, recently I have spent some time with this integral: $$int frac{x^2(ln x -1)}{x^4-ln ^4 x} dx$$ and in the end I could do it with the same trick..
$endgroup$
– Zacky
Jul 21 '18 at 18:34
1
$begingroup$
I guess the crucial observation here is that $${left( f^alpharight)}' = alphacdot frac {f'}{{(f)}^{1-alpha}}.$$ In other words, suppose your denominator is some expression to some weird power. If you can manipulate the expression so as to make the numerator be the derivative of what's being 'powered' in the denominator, you're good.
$endgroup$
– Fimpellizieri
Jul 21 '18 at 19:13
add a comment |
$begingroup$
Here's another approach: If we split the integral and integrate by parts, we find
begin{align}
int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t &= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + int limits_0^x frac{t^3}{(1-t^4)^{3/2}} t , mathrm{d} t \
&= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + left[frac{t}{2sqrt{1-t^4}}right]_{t=0}^{t=x} - frac{1}{2} int limits_0^x frac{1-t^4}{(1-t^4)^{3/2}} , mathrm{d} t \
&= frac{1}{2} int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t + frac{x}{2sqrt{1-x^4}}
end{align}
for $x in (-1,1)$ . Now we can solve this equation for your integral.
$endgroup$
add a comment |
$begingroup$
Using @Fimpellizieri 's brilliant observation on @Dahaka 's ingenious post:
begin{equation}
frac{d,[f(x)]^a}{dx}=frac{d,f^a}{df}frac{d,f}{dx}=af^{a-1}cdot f'=afrac{f'}{f^{1-a}}tag{1}
end{equation}
we find the integral in the question belongs to a family that can be found from using $(1)$.
First consider $I=intfrac{1+x^2}{(1-x^2)^{2}}dx$ and let $f(x)=x^{-1}-x$, $f'(x)=-x^{-2}-1=-1cdot(x^{-2}+1)$, $a=-1$. Now by $(1)$
$$frac{d,[f(x)]^{-1}}{dx}=-1cdotfrac{(-1cdot(x^{-2}+1))}{(x^{-1}-x)^{1-(-1)}}
=frac{(x^{-2}+1)}{(x^{-1}-x)^{2}}=frac{1+x^2}{(1-x^2)^2}$$
and so
$$I=int frac{(1+x^{2})}{(1-x^{2})^{2}}dx=int d,([f(x)]^{-1})=[f(x)]^{-1}+c=(x^{-1}-x)^{-1}+c=frac{x}{1-x^2}+c$$
For the next let $f(x)=x^{-2}-x^{2}$, $f'(x)=-2x^{-3}-2x=-2cdot(x^{-3}+x)$, $a=-frac{1}{2}$. Now by $(1)$
$$frac{d,[f(x)]^{-1/2}}{dx}=-frac{1}{2}cdotfrac{(-2cdot(x^{-3}+x))}{(x^{-2}-x^{2})^{1-(-frac{1}{2})}}
=frac{(x^{-3}+x)}{(x^{-2}-x^{2})^{3/2}}=frac{1+x^4}{(1-x^4)^{3/2}}$$
and so
$$I=int frac{1+x^4}{(1-x^4)^{3/2}}dx=int d,([f(x)]^{-1/2})=[f(x)]^{-1/2}+c=(x^{-2}-x^{2})^{-1/2}+c=frac{x}{(1-x^4)^{1/2}}+c$$
For the next in the pattern we have
begin{align*}
I&=intfrac{1+x^6}{(1-x^6)^{4/3}}dx=intfrac{(1+x^6)/x^4}{(1-x^6)^{4/3}/x^4}dx=intfrac{x^{-4}+x^2}{(x^{-3}-x^3)^{4/3}}dx\
&=int dleft((x^{-3}-x^3)^{-1/3}right)=(x^{-3}-x^3)^{-1/3}+c=frac{x}{(1-x^6)^{1/3}}+c
end{align*}
In general we have (with $f(x)=x^{-n}-x^{n}$, $f'(x)=-ncdot(x^{-(n+1)}+x^{n-1})$, $a=-frac{1}{n}$)
begin{align*}
I&=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=intfrac{(1+x^{2n})/x^{(n+1)}}{(1-x^{2n})^{(n+1)/n}/x^{(n+1)}}dx=int-frac{1}{n}cdotfrac{left(-ncdot(x^{-{(n+1)}}+x^{n-1})right)}{(x^{-n}-x^{n})^{(n+1)/n}}dx\
&=int dleft((x^{-n}-x^n)^{-1/n}right)=(x^{-n}-x^n)^{-1/n}+c=frac{x}{(1-x^{2n})^{1/n}}+c
end{align*}
giving the general result:
begin{equation}
I=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=frac{x}{(1-x^{2n})^{1/n}}+c
end{equation}
$endgroup$
add a comment |
$begingroup$
This is an elementary method for begigners. It can be done with simple algebraic manipulation.
$frac{1+x^4}{(1-x^4)^{3/2}}=frac{2x^4}{(1-x^4)^{3/2}}+(1-x^4)^{-1/2}= x.[(1-x^4)^{-1/2}]'+ x'.(1-x^4)^{-1/2}=[x(1-x^4)^{-1/2}]'$
$$int frac{1+x^4}{(1-x^4)^{3/2}} = x(1-x^4)^{-1/2}+c$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2858747%2fhow-to-evaluate-int-frac1x41-x43-2dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$intfrac{1+x^4}{(1-x^4)^{3/2}}dx=intfrac{1+x^4}{(x^{-2}-x^2)^{3/2}x^3}dx=intfrac{x^{-3}+x}{(x^{-2}-x^2)^{3/2}}dx$$ Now guess who's derivative is the numerator?
$endgroup$
3
$begingroup$
Okay... that's magic! But what led to approach the problem in this way?(+1)
$endgroup$
– tatan
Jul 21 '18 at 18:30
5
$begingroup$
Well, recently I have spent some time with this integral: $$int frac{x^2(ln x -1)}{x^4-ln ^4 x} dx$$ and in the end I could do it with the same trick..
$endgroup$
– Zacky
Jul 21 '18 at 18:34
1
$begingroup$
I guess the crucial observation here is that $${left( f^alpharight)}' = alphacdot frac {f'}{{(f)}^{1-alpha}}.$$ In other words, suppose your denominator is some expression to some weird power. If you can manipulate the expression so as to make the numerator be the derivative of what's being 'powered' in the denominator, you're good.
$endgroup$
– Fimpellizieri
Jul 21 '18 at 19:13
add a comment |
$begingroup$
$$intfrac{1+x^4}{(1-x^4)^{3/2}}dx=intfrac{1+x^4}{(x^{-2}-x^2)^{3/2}x^3}dx=intfrac{x^{-3}+x}{(x^{-2}-x^2)^{3/2}}dx$$ Now guess who's derivative is the numerator?
$endgroup$
3
$begingroup$
Okay... that's magic! But what led to approach the problem in this way?(+1)
$endgroup$
– tatan
Jul 21 '18 at 18:30
5
$begingroup$
Well, recently I have spent some time with this integral: $$int frac{x^2(ln x -1)}{x^4-ln ^4 x} dx$$ and in the end I could do it with the same trick..
$endgroup$
– Zacky
Jul 21 '18 at 18:34
1
$begingroup$
I guess the crucial observation here is that $${left( f^alpharight)}' = alphacdot frac {f'}{{(f)}^{1-alpha}}.$$ In other words, suppose your denominator is some expression to some weird power. If you can manipulate the expression so as to make the numerator be the derivative of what's being 'powered' in the denominator, you're good.
$endgroup$
– Fimpellizieri
Jul 21 '18 at 19:13
add a comment |
$begingroup$
$$intfrac{1+x^4}{(1-x^4)^{3/2}}dx=intfrac{1+x^4}{(x^{-2}-x^2)^{3/2}x^3}dx=intfrac{x^{-3}+x}{(x^{-2}-x^2)^{3/2}}dx$$ Now guess who's derivative is the numerator?
$endgroup$
$$intfrac{1+x^4}{(1-x^4)^{3/2}}dx=intfrac{1+x^4}{(x^{-2}-x^2)^{3/2}x^3}dx=intfrac{x^{-3}+x}{(x^{-2}-x^2)^{3/2}}dx$$ Now guess who's derivative is the numerator?
edited Dec 29 '18 at 19:57
answered Jul 21 '18 at 18:28
ZackyZacky
7,89511061
7,89511061
3
$begingroup$
Okay... that's magic! But what led to approach the problem in this way?(+1)
$endgroup$
– tatan
Jul 21 '18 at 18:30
5
$begingroup$
Well, recently I have spent some time with this integral: $$int frac{x^2(ln x -1)}{x^4-ln ^4 x} dx$$ and in the end I could do it with the same trick..
$endgroup$
– Zacky
Jul 21 '18 at 18:34
1
$begingroup$
I guess the crucial observation here is that $${left( f^alpharight)}' = alphacdot frac {f'}{{(f)}^{1-alpha}}.$$ In other words, suppose your denominator is some expression to some weird power. If you can manipulate the expression so as to make the numerator be the derivative of what's being 'powered' in the denominator, you're good.
$endgroup$
– Fimpellizieri
Jul 21 '18 at 19:13
add a comment |
3
$begingroup$
Okay... that's magic! But what led to approach the problem in this way?(+1)
$endgroup$
– tatan
Jul 21 '18 at 18:30
5
$begingroup$
Well, recently I have spent some time with this integral: $$int frac{x^2(ln x -1)}{x^4-ln ^4 x} dx$$ and in the end I could do it with the same trick..
$endgroup$
– Zacky
Jul 21 '18 at 18:34
1
$begingroup$
I guess the crucial observation here is that $${left( f^alpharight)}' = alphacdot frac {f'}{{(f)}^{1-alpha}}.$$ In other words, suppose your denominator is some expression to some weird power. If you can manipulate the expression so as to make the numerator be the derivative of what's being 'powered' in the denominator, you're good.
$endgroup$
– Fimpellizieri
Jul 21 '18 at 19:13
3
3
$begingroup$
Okay... that's magic! But what led to approach the problem in this way?(+1)
$endgroup$
– tatan
Jul 21 '18 at 18:30
$begingroup$
Okay... that's magic! But what led to approach the problem in this way?(+1)
$endgroup$
– tatan
Jul 21 '18 at 18:30
5
5
$begingroup$
Well, recently I have spent some time with this integral: $$int frac{x^2(ln x -1)}{x^4-ln ^4 x} dx$$ and in the end I could do it with the same trick..
$endgroup$
– Zacky
Jul 21 '18 at 18:34
$begingroup$
Well, recently I have spent some time with this integral: $$int frac{x^2(ln x -1)}{x^4-ln ^4 x} dx$$ and in the end I could do it with the same trick..
$endgroup$
– Zacky
Jul 21 '18 at 18:34
1
1
$begingroup$
I guess the crucial observation here is that $${left( f^alpharight)}' = alphacdot frac {f'}{{(f)}^{1-alpha}}.$$ In other words, suppose your denominator is some expression to some weird power. If you can manipulate the expression so as to make the numerator be the derivative of what's being 'powered' in the denominator, you're good.
$endgroup$
– Fimpellizieri
Jul 21 '18 at 19:13
$begingroup$
I guess the crucial observation here is that $${left( f^alpharight)}' = alphacdot frac {f'}{{(f)}^{1-alpha}}.$$ In other words, suppose your denominator is some expression to some weird power. If you can manipulate the expression so as to make the numerator be the derivative of what's being 'powered' in the denominator, you're good.
$endgroup$
– Fimpellizieri
Jul 21 '18 at 19:13
add a comment |
$begingroup$
Here's another approach: If we split the integral and integrate by parts, we find
begin{align}
int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t &= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + int limits_0^x frac{t^3}{(1-t^4)^{3/2}} t , mathrm{d} t \
&= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + left[frac{t}{2sqrt{1-t^4}}right]_{t=0}^{t=x} - frac{1}{2} int limits_0^x frac{1-t^4}{(1-t^4)^{3/2}} , mathrm{d} t \
&= frac{1}{2} int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t + frac{x}{2sqrt{1-x^4}}
end{align}
for $x in (-1,1)$ . Now we can solve this equation for your integral.
$endgroup$
add a comment |
$begingroup$
Here's another approach: If we split the integral and integrate by parts, we find
begin{align}
int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t &= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + int limits_0^x frac{t^3}{(1-t^4)^{3/2}} t , mathrm{d} t \
&= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + left[frac{t}{2sqrt{1-t^4}}right]_{t=0}^{t=x} - frac{1}{2} int limits_0^x frac{1-t^4}{(1-t^4)^{3/2}} , mathrm{d} t \
&= frac{1}{2} int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t + frac{x}{2sqrt{1-x^4}}
end{align}
for $x in (-1,1)$ . Now we can solve this equation for your integral.
$endgroup$
add a comment |
$begingroup$
Here's another approach: If we split the integral and integrate by parts, we find
begin{align}
int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t &= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + int limits_0^x frac{t^3}{(1-t^4)^{3/2}} t , mathrm{d} t \
&= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + left[frac{t}{2sqrt{1-t^4}}right]_{t=0}^{t=x} - frac{1}{2} int limits_0^x frac{1-t^4}{(1-t^4)^{3/2}} , mathrm{d} t \
&= frac{1}{2} int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t + frac{x}{2sqrt{1-x^4}}
end{align}
for $x in (-1,1)$ . Now we can solve this equation for your integral.
$endgroup$
Here's another approach: If we split the integral and integrate by parts, we find
begin{align}
int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t &= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + int limits_0^x frac{t^3}{(1-t^4)^{3/2}} t , mathrm{d} t \
&= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + left[frac{t}{2sqrt{1-t^4}}right]_{t=0}^{t=x} - frac{1}{2} int limits_0^x frac{1-t^4}{(1-t^4)^{3/2}} , mathrm{d} t \
&= frac{1}{2} int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t + frac{x}{2sqrt{1-x^4}}
end{align}
for $x in (-1,1)$ . Now we can solve this equation for your integral.
answered Jul 21 '18 at 20:25
ComplexYetTrivialComplexYetTrivial
4,9682631
4,9682631
add a comment |
add a comment |
$begingroup$
Using @Fimpellizieri 's brilliant observation on @Dahaka 's ingenious post:
begin{equation}
frac{d,[f(x)]^a}{dx}=frac{d,f^a}{df}frac{d,f}{dx}=af^{a-1}cdot f'=afrac{f'}{f^{1-a}}tag{1}
end{equation}
we find the integral in the question belongs to a family that can be found from using $(1)$.
First consider $I=intfrac{1+x^2}{(1-x^2)^{2}}dx$ and let $f(x)=x^{-1}-x$, $f'(x)=-x^{-2}-1=-1cdot(x^{-2}+1)$, $a=-1$. Now by $(1)$
$$frac{d,[f(x)]^{-1}}{dx}=-1cdotfrac{(-1cdot(x^{-2}+1))}{(x^{-1}-x)^{1-(-1)}}
=frac{(x^{-2}+1)}{(x^{-1}-x)^{2}}=frac{1+x^2}{(1-x^2)^2}$$
and so
$$I=int frac{(1+x^{2})}{(1-x^{2})^{2}}dx=int d,([f(x)]^{-1})=[f(x)]^{-1}+c=(x^{-1}-x)^{-1}+c=frac{x}{1-x^2}+c$$
For the next let $f(x)=x^{-2}-x^{2}$, $f'(x)=-2x^{-3}-2x=-2cdot(x^{-3}+x)$, $a=-frac{1}{2}$. Now by $(1)$
$$frac{d,[f(x)]^{-1/2}}{dx}=-frac{1}{2}cdotfrac{(-2cdot(x^{-3}+x))}{(x^{-2}-x^{2})^{1-(-frac{1}{2})}}
=frac{(x^{-3}+x)}{(x^{-2}-x^{2})^{3/2}}=frac{1+x^4}{(1-x^4)^{3/2}}$$
and so
$$I=int frac{1+x^4}{(1-x^4)^{3/2}}dx=int d,([f(x)]^{-1/2})=[f(x)]^{-1/2}+c=(x^{-2}-x^{2})^{-1/2}+c=frac{x}{(1-x^4)^{1/2}}+c$$
For the next in the pattern we have
begin{align*}
I&=intfrac{1+x^6}{(1-x^6)^{4/3}}dx=intfrac{(1+x^6)/x^4}{(1-x^6)^{4/3}/x^4}dx=intfrac{x^{-4}+x^2}{(x^{-3}-x^3)^{4/3}}dx\
&=int dleft((x^{-3}-x^3)^{-1/3}right)=(x^{-3}-x^3)^{-1/3}+c=frac{x}{(1-x^6)^{1/3}}+c
end{align*}
In general we have (with $f(x)=x^{-n}-x^{n}$, $f'(x)=-ncdot(x^{-(n+1)}+x^{n-1})$, $a=-frac{1}{n}$)
begin{align*}
I&=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=intfrac{(1+x^{2n})/x^{(n+1)}}{(1-x^{2n})^{(n+1)/n}/x^{(n+1)}}dx=int-frac{1}{n}cdotfrac{left(-ncdot(x^{-{(n+1)}}+x^{n-1})right)}{(x^{-n}-x^{n})^{(n+1)/n}}dx\
&=int dleft((x^{-n}-x^n)^{-1/n}right)=(x^{-n}-x^n)^{-1/n}+c=frac{x}{(1-x^{2n})^{1/n}}+c
end{align*}
giving the general result:
begin{equation}
I=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=frac{x}{(1-x^{2n})^{1/n}}+c
end{equation}
$endgroup$
add a comment |
$begingroup$
Using @Fimpellizieri 's brilliant observation on @Dahaka 's ingenious post:
begin{equation}
frac{d,[f(x)]^a}{dx}=frac{d,f^a}{df}frac{d,f}{dx}=af^{a-1}cdot f'=afrac{f'}{f^{1-a}}tag{1}
end{equation}
we find the integral in the question belongs to a family that can be found from using $(1)$.
First consider $I=intfrac{1+x^2}{(1-x^2)^{2}}dx$ and let $f(x)=x^{-1}-x$, $f'(x)=-x^{-2}-1=-1cdot(x^{-2}+1)$, $a=-1$. Now by $(1)$
$$frac{d,[f(x)]^{-1}}{dx}=-1cdotfrac{(-1cdot(x^{-2}+1))}{(x^{-1}-x)^{1-(-1)}}
=frac{(x^{-2}+1)}{(x^{-1}-x)^{2}}=frac{1+x^2}{(1-x^2)^2}$$
and so
$$I=int frac{(1+x^{2})}{(1-x^{2})^{2}}dx=int d,([f(x)]^{-1})=[f(x)]^{-1}+c=(x^{-1}-x)^{-1}+c=frac{x}{1-x^2}+c$$
For the next let $f(x)=x^{-2}-x^{2}$, $f'(x)=-2x^{-3}-2x=-2cdot(x^{-3}+x)$, $a=-frac{1}{2}$. Now by $(1)$
$$frac{d,[f(x)]^{-1/2}}{dx}=-frac{1}{2}cdotfrac{(-2cdot(x^{-3}+x))}{(x^{-2}-x^{2})^{1-(-frac{1}{2})}}
=frac{(x^{-3}+x)}{(x^{-2}-x^{2})^{3/2}}=frac{1+x^4}{(1-x^4)^{3/2}}$$
and so
$$I=int frac{1+x^4}{(1-x^4)^{3/2}}dx=int d,([f(x)]^{-1/2})=[f(x)]^{-1/2}+c=(x^{-2}-x^{2})^{-1/2}+c=frac{x}{(1-x^4)^{1/2}}+c$$
For the next in the pattern we have
begin{align*}
I&=intfrac{1+x^6}{(1-x^6)^{4/3}}dx=intfrac{(1+x^6)/x^4}{(1-x^6)^{4/3}/x^4}dx=intfrac{x^{-4}+x^2}{(x^{-3}-x^3)^{4/3}}dx\
&=int dleft((x^{-3}-x^3)^{-1/3}right)=(x^{-3}-x^3)^{-1/3}+c=frac{x}{(1-x^6)^{1/3}}+c
end{align*}
In general we have (with $f(x)=x^{-n}-x^{n}$, $f'(x)=-ncdot(x^{-(n+1)}+x^{n-1})$, $a=-frac{1}{n}$)
begin{align*}
I&=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=intfrac{(1+x^{2n})/x^{(n+1)}}{(1-x^{2n})^{(n+1)/n}/x^{(n+1)}}dx=int-frac{1}{n}cdotfrac{left(-ncdot(x^{-{(n+1)}}+x^{n-1})right)}{(x^{-n}-x^{n})^{(n+1)/n}}dx\
&=int dleft((x^{-n}-x^n)^{-1/n}right)=(x^{-n}-x^n)^{-1/n}+c=frac{x}{(1-x^{2n})^{1/n}}+c
end{align*}
giving the general result:
begin{equation}
I=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=frac{x}{(1-x^{2n})^{1/n}}+c
end{equation}
$endgroup$
add a comment |
$begingroup$
Using @Fimpellizieri 's brilliant observation on @Dahaka 's ingenious post:
begin{equation}
frac{d,[f(x)]^a}{dx}=frac{d,f^a}{df}frac{d,f}{dx}=af^{a-1}cdot f'=afrac{f'}{f^{1-a}}tag{1}
end{equation}
we find the integral in the question belongs to a family that can be found from using $(1)$.
First consider $I=intfrac{1+x^2}{(1-x^2)^{2}}dx$ and let $f(x)=x^{-1}-x$, $f'(x)=-x^{-2}-1=-1cdot(x^{-2}+1)$, $a=-1$. Now by $(1)$
$$frac{d,[f(x)]^{-1}}{dx}=-1cdotfrac{(-1cdot(x^{-2}+1))}{(x^{-1}-x)^{1-(-1)}}
=frac{(x^{-2}+1)}{(x^{-1}-x)^{2}}=frac{1+x^2}{(1-x^2)^2}$$
and so
$$I=int frac{(1+x^{2})}{(1-x^{2})^{2}}dx=int d,([f(x)]^{-1})=[f(x)]^{-1}+c=(x^{-1}-x)^{-1}+c=frac{x}{1-x^2}+c$$
For the next let $f(x)=x^{-2}-x^{2}$, $f'(x)=-2x^{-3}-2x=-2cdot(x^{-3}+x)$, $a=-frac{1}{2}$. Now by $(1)$
$$frac{d,[f(x)]^{-1/2}}{dx}=-frac{1}{2}cdotfrac{(-2cdot(x^{-3}+x))}{(x^{-2}-x^{2})^{1-(-frac{1}{2})}}
=frac{(x^{-3}+x)}{(x^{-2}-x^{2})^{3/2}}=frac{1+x^4}{(1-x^4)^{3/2}}$$
and so
$$I=int frac{1+x^4}{(1-x^4)^{3/2}}dx=int d,([f(x)]^{-1/2})=[f(x)]^{-1/2}+c=(x^{-2}-x^{2})^{-1/2}+c=frac{x}{(1-x^4)^{1/2}}+c$$
For the next in the pattern we have
begin{align*}
I&=intfrac{1+x^6}{(1-x^6)^{4/3}}dx=intfrac{(1+x^6)/x^4}{(1-x^6)^{4/3}/x^4}dx=intfrac{x^{-4}+x^2}{(x^{-3}-x^3)^{4/3}}dx\
&=int dleft((x^{-3}-x^3)^{-1/3}right)=(x^{-3}-x^3)^{-1/3}+c=frac{x}{(1-x^6)^{1/3}}+c
end{align*}
In general we have (with $f(x)=x^{-n}-x^{n}$, $f'(x)=-ncdot(x^{-(n+1)}+x^{n-1})$, $a=-frac{1}{n}$)
begin{align*}
I&=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=intfrac{(1+x^{2n})/x^{(n+1)}}{(1-x^{2n})^{(n+1)/n}/x^{(n+1)}}dx=int-frac{1}{n}cdotfrac{left(-ncdot(x^{-{(n+1)}}+x^{n-1})right)}{(x^{-n}-x^{n})^{(n+1)/n}}dx\
&=int dleft((x^{-n}-x^n)^{-1/n}right)=(x^{-n}-x^n)^{-1/n}+c=frac{x}{(1-x^{2n})^{1/n}}+c
end{align*}
giving the general result:
begin{equation}
I=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=frac{x}{(1-x^{2n})^{1/n}}+c
end{equation}
$endgroup$
Using @Fimpellizieri 's brilliant observation on @Dahaka 's ingenious post:
begin{equation}
frac{d,[f(x)]^a}{dx}=frac{d,f^a}{df}frac{d,f}{dx}=af^{a-1}cdot f'=afrac{f'}{f^{1-a}}tag{1}
end{equation}
we find the integral in the question belongs to a family that can be found from using $(1)$.
First consider $I=intfrac{1+x^2}{(1-x^2)^{2}}dx$ and let $f(x)=x^{-1}-x$, $f'(x)=-x^{-2}-1=-1cdot(x^{-2}+1)$, $a=-1$. Now by $(1)$
$$frac{d,[f(x)]^{-1}}{dx}=-1cdotfrac{(-1cdot(x^{-2}+1))}{(x^{-1}-x)^{1-(-1)}}
=frac{(x^{-2}+1)}{(x^{-1}-x)^{2}}=frac{1+x^2}{(1-x^2)^2}$$
and so
$$I=int frac{(1+x^{2})}{(1-x^{2})^{2}}dx=int d,([f(x)]^{-1})=[f(x)]^{-1}+c=(x^{-1}-x)^{-1}+c=frac{x}{1-x^2}+c$$
For the next let $f(x)=x^{-2}-x^{2}$, $f'(x)=-2x^{-3}-2x=-2cdot(x^{-3}+x)$, $a=-frac{1}{2}$. Now by $(1)$
$$frac{d,[f(x)]^{-1/2}}{dx}=-frac{1}{2}cdotfrac{(-2cdot(x^{-3}+x))}{(x^{-2}-x^{2})^{1-(-frac{1}{2})}}
=frac{(x^{-3}+x)}{(x^{-2}-x^{2})^{3/2}}=frac{1+x^4}{(1-x^4)^{3/2}}$$
and so
$$I=int frac{1+x^4}{(1-x^4)^{3/2}}dx=int d,([f(x)]^{-1/2})=[f(x)]^{-1/2}+c=(x^{-2}-x^{2})^{-1/2}+c=frac{x}{(1-x^4)^{1/2}}+c$$
For the next in the pattern we have
begin{align*}
I&=intfrac{1+x^6}{(1-x^6)^{4/3}}dx=intfrac{(1+x^6)/x^4}{(1-x^6)^{4/3}/x^4}dx=intfrac{x^{-4}+x^2}{(x^{-3}-x^3)^{4/3}}dx\
&=int dleft((x^{-3}-x^3)^{-1/3}right)=(x^{-3}-x^3)^{-1/3}+c=frac{x}{(1-x^6)^{1/3}}+c
end{align*}
In general we have (with $f(x)=x^{-n}-x^{n}$, $f'(x)=-ncdot(x^{-(n+1)}+x^{n-1})$, $a=-frac{1}{n}$)
begin{align*}
I&=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=intfrac{(1+x^{2n})/x^{(n+1)}}{(1-x^{2n})^{(n+1)/n}/x^{(n+1)}}dx=int-frac{1}{n}cdotfrac{left(-ncdot(x^{-{(n+1)}}+x^{n-1})right)}{(x^{-n}-x^{n})^{(n+1)/n}}dx\
&=int dleft((x^{-n}-x^n)^{-1/n}right)=(x^{-n}-x^n)^{-1/n}+c=frac{x}{(1-x^{2n})^{1/n}}+c
end{align*}
giving the general result:
begin{equation}
I=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=frac{x}{(1-x^{2n})^{1/n}}+c
end{equation}
edited Jul 30 '18 at 22:57
answered Jul 22 '18 at 0:57
Daniel BuckDaniel Buck
2,8281725
2,8281725
add a comment |
add a comment |
$begingroup$
This is an elementary method for begigners. It can be done with simple algebraic manipulation.
$frac{1+x^4}{(1-x^4)^{3/2}}=frac{2x^4}{(1-x^4)^{3/2}}+(1-x^4)^{-1/2}= x.[(1-x^4)^{-1/2}]'+ x'.(1-x^4)^{-1/2}=[x(1-x^4)^{-1/2}]'$
$$int frac{1+x^4}{(1-x^4)^{3/2}} = x(1-x^4)^{-1/2}+c$$
$endgroup$
add a comment |
$begingroup$
This is an elementary method for begigners. It can be done with simple algebraic manipulation.
$frac{1+x^4}{(1-x^4)^{3/2}}=frac{2x^4}{(1-x^4)^{3/2}}+(1-x^4)^{-1/2}= x.[(1-x^4)^{-1/2}]'+ x'.(1-x^4)^{-1/2}=[x(1-x^4)^{-1/2}]'$
$$int frac{1+x^4}{(1-x^4)^{3/2}} = x(1-x^4)^{-1/2}+c$$
$endgroup$
add a comment |
$begingroup$
This is an elementary method for begigners. It can be done with simple algebraic manipulation.
$frac{1+x^4}{(1-x^4)^{3/2}}=frac{2x^4}{(1-x^4)^{3/2}}+(1-x^4)^{-1/2}= x.[(1-x^4)^{-1/2}]'+ x'.(1-x^4)^{-1/2}=[x(1-x^4)^{-1/2}]'$
$$int frac{1+x^4}{(1-x^4)^{3/2}} = x(1-x^4)^{-1/2}+c$$
$endgroup$
This is an elementary method for begigners. It can be done with simple algebraic manipulation.
$frac{1+x^4}{(1-x^4)^{3/2}}=frac{2x^4}{(1-x^4)^{3/2}}+(1-x^4)^{-1/2}= x.[(1-x^4)^{-1/2}]'+ x'.(1-x^4)^{-1/2}=[x(1-x^4)^{-1/2}]'$
$$int frac{1+x^4}{(1-x^4)^{3/2}} = x(1-x^4)^{-1/2}+c$$
edited Jul 22 '18 at 0:38
answered Jul 21 '18 at 21:31
siroussirous
1,6851514
1,6851514
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2858747%2fhow-to-evaluate-int-frac1x41-x43-2dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown