How to evaluate $intfrac{1+x^4}{(1-x^4)^{3/2}}dx$?












11












$begingroup$


How do I start with evaluating this-




$$intfrac{1+x^4}{(1-x^4)^{3/2}}dx$$




What should be my first attempt at this kind of a problem where-




  • The denominator and numerator are of the same degree

  • Denominator involves fractional exponent like $3/2$.


Note:I am proficient with all kinds of basic methods of evaluating integrals.










share|cite|improve this question











$endgroup$

















    11












    $begingroup$


    How do I start with evaluating this-




    $$intfrac{1+x^4}{(1-x^4)^{3/2}}dx$$




    What should be my first attempt at this kind of a problem where-




    • The denominator and numerator are of the same degree

    • Denominator involves fractional exponent like $3/2$.


    Note:I am proficient with all kinds of basic methods of evaluating integrals.










    share|cite|improve this question











    $endgroup$















      11












      11








      11


      4



      $begingroup$


      How do I start with evaluating this-




      $$intfrac{1+x^4}{(1-x^4)^{3/2}}dx$$




      What should be my first attempt at this kind of a problem where-




      • The denominator and numerator are of the same degree

      • Denominator involves fractional exponent like $3/2$.


      Note:I am proficient with all kinds of basic methods of evaluating integrals.










      share|cite|improve this question











      $endgroup$




      How do I start with evaluating this-




      $$intfrac{1+x^4}{(1-x^4)^{3/2}}dx$$




      What should be my first attempt at this kind of a problem where-




      • The denominator and numerator are of the same degree

      • Denominator involves fractional exponent like $3/2$.


      Note:I am proficient with all kinds of basic methods of evaluating integrals.







      calculus integration indefinite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Feb 1 at 12:59









      Martin Sleziak

      44.9k10122275




      44.9k10122275










      asked Jul 21 '18 at 18:02









      tatantatan

      5,82262760




      5,82262760






















          4 Answers
          4






          active

          oldest

          votes


















          21












          $begingroup$

          $$intfrac{1+x^4}{(1-x^4)^{3/2}}dx=intfrac{1+x^4}{(x^{-2}-x^2)^{3/2}x^3}dx=intfrac{x^{-3}+x}{(x^{-2}-x^2)^{3/2}}dx$$ Now guess who's derivative is the numerator?






          share|cite|improve this answer











          $endgroup$









          • 3




            $begingroup$
            Okay... that's magic! But what led to approach the problem in this way?(+1)
            $endgroup$
            – tatan
            Jul 21 '18 at 18:30






          • 5




            $begingroup$
            Well, recently I have spent some time with this integral: $$int frac{x^2(ln x -1)}{x^4-ln ^4 x} dx$$ and in the end I could do it with the same trick..
            $endgroup$
            – Zacky
            Jul 21 '18 at 18:34








          • 1




            $begingroup$
            I guess the crucial observation here is that $${left( f^alpharight)}' = alphacdot frac {f'}{{(f)}^{1-alpha}}.$$ In other words, suppose your denominator is some expression to some weird power. If you can manipulate the expression so as to make the numerator be the derivative of what's being 'powered' in the denominator, you're good.
            $endgroup$
            – Fimpellizieri
            Jul 21 '18 at 19:13





















          8












          $begingroup$

          Here's another approach: If we split the integral and integrate by parts, we find
          begin{align}
          int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t &= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + int limits_0^x frac{t^3}{(1-t^4)^{3/2}} t , mathrm{d} t \
          &= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + left[frac{t}{2sqrt{1-t^4}}right]_{t=0}^{t=x} - frac{1}{2} int limits_0^x frac{1-t^4}{(1-t^4)^{3/2}} , mathrm{d} t \
          &= frac{1}{2} int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t + frac{x}{2sqrt{1-x^4}}
          end{align}
          for $x in (-1,1)$ . Now we can solve this equation for your integral.






          share|cite|improve this answer









          $endgroup$





















            3












            $begingroup$

            Using @Fimpellizieri 's brilliant observation on @Dahaka 's ingenious post:
            begin{equation}
            frac{d,[f(x)]^a}{dx}=frac{d,f^a}{df}frac{d,f}{dx}=af^{a-1}cdot f'=afrac{f'}{f^{1-a}}tag{1}
            end{equation}
            we find the integral in the question belongs to a family that can be found from using $(1)$.



            First consider $I=intfrac{1+x^2}{(1-x^2)^{2}}dx$ and let $f(x)=x^{-1}-x$, $f'(x)=-x^{-2}-1=-1cdot(x^{-2}+1)$, $a=-1$. Now by $(1)$
            $$frac{d,[f(x)]^{-1}}{dx}=-1cdotfrac{(-1cdot(x^{-2}+1))}{(x^{-1}-x)^{1-(-1)}}
            =frac{(x^{-2}+1)}{(x^{-1}-x)^{2}}=frac{1+x^2}{(1-x^2)^2}$$
            and so
            $$I=int frac{(1+x^{2})}{(1-x^{2})^{2}}dx=int d,([f(x)]^{-1})=[f(x)]^{-1}+c=(x^{-1}-x)^{-1}+c=frac{x}{1-x^2}+c$$



            For the next let $f(x)=x^{-2}-x^{2}$, $f'(x)=-2x^{-3}-2x=-2cdot(x^{-3}+x)$, $a=-frac{1}{2}$. Now by $(1)$
            $$frac{d,[f(x)]^{-1/2}}{dx}=-frac{1}{2}cdotfrac{(-2cdot(x^{-3}+x))}{(x^{-2}-x^{2})^{1-(-frac{1}{2})}}
            =frac{(x^{-3}+x)}{(x^{-2}-x^{2})^{3/2}}=frac{1+x^4}{(1-x^4)^{3/2}}$$
            and so
            $$I=int frac{1+x^4}{(1-x^4)^{3/2}}dx=int d,([f(x)]^{-1/2})=[f(x)]^{-1/2}+c=(x^{-2}-x^{2})^{-1/2}+c=frac{x}{(1-x^4)^{1/2}}+c$$



            For the next in the pattern we have
            begin{align*}
            I&=intfrac{1+x^6}{(1-x^6)^{4/3}}dx=intfrac{(1+x^6)/x^4}{(1-x^6)^{4/3}/x^4}dx=intfrac{x^{-4}+x^2}{(x^{-3}-x^3)^{4/3}}dx\
            &=int dleft((x^{-3}-x^3)^{-1/3}right)=(x^{-3}-x^3)^{-1/3}+c=frac{x}{(1-x^6)^{1/3}}+c
            end{align*}
            In general we have (with $f(x)=x^{-n}-x^{n}$, $f'(x)=-ncdot(x^{-(n+1)}+x^{n-1})$, $a=-frac{1}{n}$)
            begin{align*}
            I&=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=intfrac{(1+x^{2n})/x^{(n+1)}}{(1-x^{2n})^{(n+1)/n}/x^{(n+1)}}dx=int-frac{1}{n}cdotfrac{left(-ncdot(x^{-{(n+1)}}+x^{n-1})right)}{(x^{-n}-x^{n})^{(n+1)/n}}dx\
            &=int dleft((x^{-n}-x^n)^{-1/n}right)=(x^{-n}-x^n)^{-1/n}+c=frac{x}{(1-x^{2n})^{1/n}}+c
            end{align*}
            giving the general result:
            begin{equation}
            I=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=frac{x}{(1-x^{2n})^{1/n}}+c
            end{equation}






            share|cite|improve this answer











            $endgroup$





















              1












              $begingroup$

              This is an elementary method for begigners. It can be done with simple algebraic manipulation.



              $frac{1+x^4}{(1-x^4)^{3/2}}=frac{2x^4}{(1-x^4)^{3/2}}+(1-x^4)^{-1/2}= x.[(1-x^4)^{-1/2}]'+ x'.(1-x^4)^{-1/2}=[x(1-x^4)^{-1/2}]'$



              $$int frac{1+x^4}{(1-x^4)^{3/2}} = x(1-x^4)^{-1/2}+c$$






              share|cite|improve this answer











              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2858747%2fhow-to-evaluate-int-frac1x41-x43-2dx%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                4 Answers
                4






                active

                oldest

                votes








                4 Answers
                4






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                21












                $begingroup$

                $$intfrac{1+x^4}{(1-x^4)^{3/2}}dx=intfrac{1+x^4}{(x^{-2}-x^2)^{3/2}x^3}dx=intfrac{x^{-3}+x}{(x^{-2}-x^2)^{3/2}}dx$$ Now guess who's derivative is the numerator?






                share|cite|improve this answer











                $endgroup$









                • 3




                  $begingroup$
                  Okay... that's magic! But what led to approach the problem in this way?(+1)
                  $endgroup$
                  – tatan
                  Jul 21 '18 at 18:30






                • 5




                  $begingroup$
                  Well, recently I have spent some time with this integral: $$int frac{x^2(ln x -1)}{x^4-ln ^4 x} dx$$ and in the end I could do it with the same trick..
                  $endgroup$
                  – Zacky
                  Jul 21 '18 at 18:34








                • 1




                  $begingroup$
                  I guess the crucial observation here is that $${left( f^alpharight)}' = alphacdot frac {f'}{{(f)}^{1-alpha}}.$$ In other words, suppose your denominator is some expression to some weird power. If you can manipulate the expression so as to make the numerator be the derivative of what's being 'powered' in the denominator, you're good.
                  $endgroup$
                  – Fimpellizieri
                  Jul 21 '18 at 19:13


















                21












                $begingroup$

                $$intfrac{1+x^4}{(1-x^4)^{3/2}}dx=intfrac{1+x^4}{(x^{-2}-x^2)^{3/2}x^3}dx=intfrac{x^{-3}+x}{(x^{-2}-x^2)^{3/2}}dx$$ Now guess who's derivative is the numerator?






                share|cite|improve this answer











                $endgroup$









                • 3




                  $begingroup$
                  Okay... that's magic! But what led to approach the problem in this way?(+1)
                  $endgroup$
                  – tatan
                  Jul 21 '18 at 18:30






                • 5




                  $begingroup$
                  Well, recently I have spent some time with this integral: $$int frac{x^2(ln x -1)}{x^4-ln ^4 x} dx$$ and in the end I could do it with the same trick..
                  $endgroup$
                  – Zacky
                  Jul 21 '18 at 18:34








                • 1




                  $begingroup$
                  I guess the crucial observation here is that $${left( f^alpharight)}' = alphacdot frac {f'}{{(f)}^{1-alpha}}.$$ In other words, suppose your denominator is some expression to some weird power. If you can manipulate the expression so as to make the numerator be the derivative of what's being 'powered' in the denominator, you're good.
                  $endgroup$
                  – Fimpellizieri
                  Jul 21 '18 at 19:13
















                21












                21








                21





                $begingroup$

                $$intfrac{1+x^4}{(1-x^4)^{3/2}}dx=intfrac{1+x^4}{(x^{-2}-x^2)^{3/2}x^3}dx=intfrac{x^{-3}+x}{(x^{-2}-x^2)^{3/2}}dx$$ Now guess who's derivative is the numerator?






                share|cite|improve this answer











                $endgroup$



                $$intfrac{1+x^4}{(1-x^4)^{3/2}}dx=intfrac{1+x^4}{(x^{-2}-x^2)^{3/2}x^3}dx=intfrac{x^{-3}+x}{(x^{-2}-x^2)^{3/2}}dx$$ Now guess who's derivative is the numerator?







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 29 '18 at 19:57

























                answered Jul 21 '18 at 18:28









                ZackyZacky

                7,89511061




                7,89511061








                • 3




                  $begingroup$
                  Okay... that's magic! But what led to approach the problem in this way?(+1)
                  $endgroup$
                  – tatan
                  Jul 21 '18 at 18:30






                • 5




                  $begingroup$
                  Well, recently I have spent some time with this integral: $$int frac{x^2(ln x -1)}{x^4-ln ^4 x} dx$$ and in the end I could do it with the same trick..
                  $endgroup$
                  – Zacky
                  Jul 21 '18 at 18:34








                • 1




                  $begingroup$
                  I guess the crucial observation here is that $${left( f^alpharight)}' = alphacdot frac {f'}{{(f)}^{1-alpha}}.$$ In other words, suppose your denominator is some expression to some weird power. If you can manipulate the expression so as to make the numerator be the derivative of what's being 'powered' in the denominator, you're good.
                  $endgroup$
                  – Fimpellizieri
                  Jul 21 '18 at 19:13
















                • 3




                  $begingroup$
                  Okay... that's magic! But what led to approach the problem in this way?(+1)
                  $endgroup$
                  – tatan
                  Jul 21 '18 at 18:30






                • 5




                  $begingroup$
                  Well, recently I have spent some time with this integral: $$int frac{x^2(ln x -1)}{x^4-ln ^4 x} dx$$ and in the end I could do it with the same trick..
                  $endgroup$
                  – Zacky
                  Jul 21 '18 at 18:34








                • 1




                  $begingroup$
                  I guess the crucial observation here is that $${left( f^alpharight)}' = alphacdot frac {f'}{{(f)}^{1-alpha}}.$$ In other words, suppose your denominator is some expression to some weird power. If you can manipulate the expression so as to make the numerator be the derivative of what's being 'powered' in the denominator, you're good.
                  $endgroup$
                  – Fimpellizieri
                  Jul 21 '18 at 19:13










                3




                3




                $begingroup$
                Okay... that's magic! But what led to approach the problem in this way?(+1)
                $endgroup$
                – tatan
                Jul 21 '18 at 18:30




                $begingroup$
                Okay... that's magic! But what led to approach the problem in this way?(+1)
                $endgroup$
                – tatan
                Jul 21 '18 at 18:30




                5




                5




                $begingroup$
                Well, recently I have spent some time with this integral: $$int frac{x^2(ln x -1)}{x^4-ln ^4 x} dx$$ and in the end I could do it with the same trick..
                $endgroup$
                – Zacky
                Jul 21 '18 at 18:34






                $begingroup$
                Well, recently I have spent some time with this integral: $$int frac{x^2(ln x -1)}{x^4-ln ^4 x} dx$$ and in the end I could do it with the same trick..
                $endgroup$
                – Zacky
                Jul 21 '18 at 18:34






                1




                1




                $begingroup$
                I guess the crucial observation here is that $${left( f^alpharight)}' = alphacdot frac {f'}{{(f)}^{1-alpha}}.$$ In other words, suppose your denominator is some expression to some weird power. If you can manipulate the expression so as to make the numerator be the derivative of what's being 'powered' in the denominator, you're good.
                $endgroup$
                – Fimpellizieri
                Jul 21 '18 at 19:13






                $begingroup$
                I guess the crucial observation here is that $${left( f^alpharight)}' = alphacdot frac {f'}{{(f)}^{1-alpha}}.$$ In other words, suppose your denominator is some expression to some weird power. If you can manipulate the expression so as to make the numerator be the derivative of what's being 'powered' in the denominator, you're good.
                $endgroup$
                – Fimpellizieri
                Jul 21 '18 at 19:13













                8












                $begingroup$

                Here's another approach: If we split the integral and integrate by parts, we find
                begin{align}
                int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t &= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + int limits_0^x frac{t^3}{(1-t^4)^{3/2}} t , mathrm{d} t \
                &= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + left[frac{t}{2sqrt{1-t^4}}right]_{t=0}^{t=x} - frac{1}{2} int limits_0^x frac{1-t^4}{(1-t^4)^{3/2}} , mathrm{d} t \
                &= frac{1}{2} int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t + frac{x}{2sqrt{1-x^4}}
                end{align}
                for $x in (-1,1)$ . Now we can solve this equation for your integral.






                share|cite|improve this answer









                $endgroup$


















                  8












                  $begingroup$

                  Here's another approach: If we split the integral and integrate by parts, we find
                  begin{align}
                  int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t &= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + int limits_0^x frac{t^3}{(1-t^4)^{3/2}} t , mathrm{d} t \
                  &= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + left[frac{t}{2sqrt{1-t^4}}right]_{t=0}^{t=x} - frac{1}{2} int limits_0^x frac{1-t^4}{(1-t^4)^{3/2}} , mathrm{d} t \
                  &= frac{1}{2} int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t + frac{x}{2sqrt{1-x^4}}
                  end{align}
                  for $x in (-1,1)$ . Now we can solve this equation for your integral.






                  share|cite|improve this answer









                  $endgroup$
















                    8












                    8








                    8





                    $begingroup$

                    Here's another approach: If we split the integral and integrate by parts, we find
                    begin{align}
                    int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t &= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + int limits_0^x frac{t^3}{(1-t^4)^{3/2}} t , mathrm{d} t \
                    &= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + left[frac{t}{2sqrt{1-t^4}}right]_{t=0}^{t=x} - frac{1}{2} int limits_0^x frac{1-t^4}{(1-t^4)^{3/2}} , mathrm{d} t \
                    &= frac{1}{2} int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t + frac{x}{2sqrt{1-x^4}}
                    end{align}
                    for $x in (-1,1)$ . Now we can solve this equation for your integral.






                    share|cite|improve this answer









                    $endgroup$



                    Here's another approach: If we split the integral and integrate by parts, we find
                    begin{align}
                    int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t &= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + int limits_0^x frac{t^3}{(1-t^4)^{3/2}} t , mathrm{d} t \
                    &= int limits_0^x frac{1}{(1-t^4)^{3/2}} , mathrm{d} t + left[frac{t}{2sqrt{1-t^4}}right]_{t=0}^{t=x} - frac{1}{2} int limits_0^x frac{1-t^4}{(1-t^4)^{3/2}} , mathrm{d} t \
                    &= frac{1}{2} int limits_0^x frac{1+t^4}{(1-t^4)^{3/2}} , mathrm{d} t + frac{x}{2sqrt{1-x^4}}
                    end{align}
                    for $x in (-1,1)$ . Now we can solve this equation for your integral.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jul 21 '18 at 20:25









                    ComplexYetTrivialComplexYetTrivial

                    4,9682631




                    4,9682631























                        3












                        $begingroup$

                        Using @Fimpellizieri 's brilliant observation on @Dahaka 's ingenious post:
                        begin{equation}
                        frac{d,[f(x)]^a}{dx}=frac{d,f^a}{df}frac{d,f}{dx}=af^{a-1}cdot f'=afrac{f'}{f^{1-a}}tag{1}
                        end{equation}
                        we find the integral in the question belongs to a family that can be found from using $(1)$.



                        First consider $I=intfrac{1+x^2}{(1-x^2)^{2}}dx$ and let $f(x)=x^{-1}-x$, $f'(x)=-x^{-2}-1=-1cdot(x^{-2}+1)$, $a=-1$. Now by $(1)$
                        $$frac{d,[f(x)]^{-1}}{dx}=-1cdotfrac{(-1cdot(x^{-2}+1))}{(x^{-1}-x)^{1-(-1)}}
                        =frac{(x^{-2}+1)}{(x^{-1}-x)^{2}}=frac{1+x^2}{(1-x^2)^2}$$
                        and so
                        $$I=int frac{(1+x^{2})}{(1-x^{2})^{2}}dx=int d,([f(x)]^{-1})=[f(x)]^{-1}+c=(x^{-1}-x)^{-1}+c=frac{x}{1-x^2}+c$$



                        For the next let $f(x)=x^{-2}-x^{2}$, $f'(x)=-2x^{-3}-2x=-2cdot(x^{-3}+x)$, $a=-frac{1}{2}$. Now by $(1)$
                        $$frac{d,[f(x)]^{-1/2}}{dx}=-frac{1}{2}cdotfrac{(-2cdot(x^{-3}+x))}{(x^{-2}-x^{2})^{1-(-frac{1}{2})}}
                        =frac{(x^{-3}+x)}{(x^{-2}-x^{2})^{3/2}}=frac{1+x^4}{(1-x^4)^{3/2}}$$
                        and so
                        $$I=int frac{1+x^4}{(1-x^4)^{3/2}}dx=int d,([f(x)]^{-1/2})=[f(x)]^{-1/2}+c=(x^{-2}-x^{2})^{-1/2}+c=frac{x}{(1-x^4)^{1/2}}+c$$



                        For the next in the pattern we have
                        begin{align*}
                        I&=intfrac{1+x^6}{(1-x^6)^{4/3}}dx=intfrac{(1+x^6)/x^4}{(1-x^6)^{4/3}/x^4}dx=intfrac{x^{-4}+x^2}{(x^{-3}-x^3)^{4/3}}dx\
                        &=int dleft((x^{-3}-x^3)^{-1/3}right)=(x^{-3}-x^3)^{-1/3}+c=frac{x}{(1-x^6)^{1/3}}+c
                        end{align*}
                        In general we have (with $f(x)=x^{-n}-x^{n}$, $f'(x)=-ncdot(x^{-(n+1)}+x^{n-1})$, $a=-frac{1}{n}$)
                        begin{align*}
                        I&=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=intfrac{(1+x^{2n})/x^{(n+1)}}{(1-x^{2n})^{(n+1)/n}/x^{(n+1)}}dx=int-frac{1}{n}cdotfrac{left(-ncdot(x^{-{(n+1)}}+x^{n-1})right)}{(x^{-n}-x^{n})^{(n+1)/n}}dx\
                        &=int dleft((x^{-n}-x^n)^{-1/n}right)=(x^{-n}-x^n)^{-1/n}+c=frac{x}{(1-x^{2n})^{1/n}}+c
                        end{align*}
                        giving the general result:
                        begin{equation}
                        I=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=frac{x}{(1-x^{2n})^{1/n}}+c
                        end{equation}






                        share|cite|improve this answer











                        $endgroup$


















                          3












                          $begingroup$

                          Using @Fimpellizieri 's brilliant observation on @Dahaka 's ingenious post:
                          begin{equation}
                          frac{d,[f(x)]^a}{dx}=frac{d,f^a}{df}frac{d,f}{dx}=af^{a-1}cdot f'=afrac{f'}{f^{1-a}}tag{1}
                          end{equation}
                          we find the integral in the question belongs to a family that can be found from using $(1)$.



                          First consider $I=intfrac{1+x^2}{(1-x^2)^{2}}dx$ and let $f(x)=x^{-1}-x$, $f'(x)=-x^{-2}-1=-1cdot(x^{-2}+1)$, $a=-1$. Now by $(1)$
                          $$frac{d,[f(x)]^{-1}}{dx}=-1cdotfrac{(-1cdot(x^{-2}+1))}{(x^{-1}-x)^{1-(-1)}}
                          =frac{(x^{-2}+1)}{(x^{-1}-x)^{2}}=frac{1+x^2}{(1-x^2)^2}$$
                          and so
                          $$I=int frac{(1+x^{2})}{(1-x^{2})^{2}}dx=int d,([f(x)]^{-1})=[f(x)]^{-1}+c=(x^{-1}-x)^{-1}+c=frac{x}{1-x^2}+c$$



                          For the next let $f(x)=x^{-2}-x^{2}$, $f'(x)=-2x^{-3}-2x=-2cdot(x^{-3}+x)$, $a=-frac{1}{2}$. Now by $(1)$
                          $$frac{d,[f(x)]^{-1/2}}{dx}=-frac{1}{2}cdotfrac{(-2cdot(x^{-3}+x))}{(x^{-2}-x^{2})^{1-(-frac{1}{2})}}
                          =frac{(x^{-3}+x)}{(x^{-2}-x^{2})^{3/2}}=frac{1+x^4}{(1-x^4)^{3/2}}$$
                          and so
                          $$I=int frac{1+x^4}{(1-x^4)^{3/2}}dx=int d,([f(x)]^{-1/2})=[f(x)]^{-1/2}+c=(x^{-2}-x^{2})^{-1/2}+c=frac{x}{(1-x^4)^{1/2}}+c$$



                          For the next in the pattern we have
                          begin{align*}
                          I&=intfrac{1+x^6}{(1-x^6)^{4/3}}dx=intfrac{(1+x^6)/x^4}{(1-x^6)^{4/3}/x^4}dx=intfrac{x^{-4}+x^2}{(x^{-3}-x^3)^{4/3}}dx\
                          &=int dleft((x^{-3}-x^3)^{-1/3}right)=(x^{-3}-x^3)^{-1/3}+c=frac{x}{(1-x^6)^{1/3}}+c
                          end{align*}
                          In general we have (with $f(x)=x^{-n}-x^{n}$, $f'(x)=-ncdot(x^{-(n+1)}+x^{n-1})$, $a=-frac{1}{n}$)
                          begin{align*}
                          I&=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=intfrac{(1+x^{2n})/x^{(n+1)}}{(1-x^{2n})^{(n+1)/n}/x^{(n+1)}}dx=int-frac{1}{n}cdotfrac{left(-ncdot(x^{-{(n+1)}}+x^{n-1})right)}{(x^{-n}-x^{n})^{(n+1)/n}}dx\
                          &=int dleft((x^{-n}-x^n)^{-1/n}right)=(x^{-n}-x^n)^{-1/n}+c=frac{x}{(1-x^{2n})^{1/n}}+c
                          end{align*}
                          giving the general result:
                          begin{equation}
                          I=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=frac{x}{(1-x^{2n})^{1/n}}+c
                          end{equation}






                          share|cite|improve this answer











                          $endgroup$
















                            3












                            3








                            3





                            $begingroup$

                            Using @Fimpellizieri 's brilliant observation on @Dahaka 's ingenious post:
                            begin{equation}
                            frac{d,[f(x)]^a}{dx}=frac{d,f^a}{df}frac{d,f}{dx}=af^{a-1}cdot f'=afrac{f'}{f^{1-a}}tag{1}
                            end{equation}
                            we find the integral in the question belongs to a family that can be found from using $(1)$.



                            First consider $I=intfrac{1+x^2}{(1-x^2)^{2}}dx$ and let $f(x)=x^{-1}-x$, $f'(x)=-x^{-2}-1=-1cdot(x^{-2}+1)$, $a=-1$. Now by $(1)$
                            $$frac{d,[f(x)]^{-1}}{dx}=-1cdotfrac{(-1cdot(x^{-2}+1))}{(x^{-1}-x)^{1-(-1)}}
                            =frac{(x^{-2}+1)}{(x^{-1}-x)^{2}}=frac{1+x^2}{(1-x^2)^2}$$
                            and so
                            $$I=int frac{(1+x^{2})}{(1-x^{2})^{2}}dx=int d,([f(x)]^{-1})=[f(x)]^{-1}+c=(x^{-1}-x)^{-1}+c=frac{x}{1-x^2}+c$$



                            For the next let $f(x)=x^{-2}-x^{2}$, $f'(x)=-2x^{-3}-2x=-2cdot(x^{-3}+x)$, $a=-frac{1}{2}$. Now by $(1)$
                            $$frac{d,[f(x)]^{-1/2}}{dx}=-frac{1}{2}cdotfrac{(-2cdot(x^{-3}+x))}{(x^{-2}-x^{2})^{1-(-frac{1}{2})}}
                            =frac{(x^{-3}+x)}{(x^{-2}-x^{2})^{3/2}}=frac{1+x^4}{(1-x^4)^{3/2}}$$
                            and so
                            $$I=int frac{1+x^4}{(1-x^4)^{3/2}}dx=int d,([f(x)]^{-1/2})=[f(x)]^{-1/2}+c=(x^{-2}-x^{2})^{-1/2}+c=frac{x}{(1-x^4)^{1/2}}+c$$



                            For the next in the pattern we have
                            begin{align*}
                            I&=intfrac{1+x^6}{(1-x^6)^{4/3}}dx=intfrac{(1+x^6)/x^4}{(1-x^6)^{4/3}/x^4}dx=intfrac{x^{-4}+x^2}{(x^{-3}-x^3)^{4/3}}dx\
                            &=int dleft((x^{-3}-x^3)^{-1/3}right)=(x^{-3}-x^3)^{-1/3}+c=frac{x}{(1-x^6)^{1/3}}+c
                            end{align*}
                            In general we have (with $f(x)=x^{-n}-x^{n}$, $f'(x)=-ncdot(x^{-(n+1)}+x^{n-1})$, $a=-frac{1}{n}$)
                            begin{align*}
                            I&=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=intfrac{(1+x^{2n})/x^{(n+1)}}{(1-x^{2n})^{(n+1)/n}/x^{(n+1)}}dx=int-frac{1}{n}cdotfrac{left(-ncdot(x^{-{(n+1)}}+x^{n-1})right)}{(x^{-n}-x^{n})^{(n+1)/n}}dx\
                            &=int dleft((x^{-n}-x^n)^{-1/n}right)=(x^{-n}-x^n)^{-1/n}+c=frac{x}{(1-x^{2n})^{1/n}}+c
                            end{align*}
                            giving the general result:
                            begin{equation}
                            I=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=frac{x}{(1-x^{2n})^{1/n}}+c
                            end{equation}






                            share|cite|improve this answer











                            $endgroup$



                            Using @Fimpellizieri 's brilliant observation on @Dahaka 's ingenious post:
                            begin{equation}
                            frac{d,[f(x)]^a}{dx}=frac{d,f^a}{df}frac{d,f}{dx}=af^{a-1}cdot f'=afrac{f'}{f^{1-a}}tag{1}
                            end{equation}
                            we find the integral in the question belongs to a family that can be found from using $(1)$.



                            First consider $I=intfrac{1+x^2}{(1-x^2)^{2}}dx$ and let $f(x)=x^{-1}-x$, $f'(x)=-x^{-2}-1=-1cdot(x^{-2}+1)$, $a=-1$. Now by $(1)$
                            $$frac{d,[f(x)]^{-1}}{dx}=-1cdotfrac{(-1cdot(x^{-2}+1))}{(x^{-1}-x)^{1-(-1)}}
                            =frac{(x^{-2}+1)}{(x^{-1}-x)^{2}}=frac{1+x^2}{(1-x^2)^2}$$
                            and so
                            $$I=int frac{(1+x^{2})}{(1-x^{2})^{2}}dx=int d,([f(x)]^{-1})=[f(x)]^{-1}+c=(x^{-1}-x)^{-1}+c=frac{x}{1-x^2}+c$$



                            For the next let $f(x)=x^{-2}-x^{2}$, $f'(x)=-2x^{-3}-2x=-2cdot(x^{-3}+x)$, $a=-frac{1}{2}$. Now by $(1)$
                            $$frac{d,[f(x)]^{-1/2}}{dx}=-frac{1}{2}cdotfrac{(-2cdot(x^{-3}+x))}{(x^{-2}-x^{2})^{1-(-frac{1}{2})}}
                            =frac{(x^{-3}+x)}{(x^{-2}-x^{2})^{3/2}}=frac{1+x^4}{(1-x^4)^{3/2}}$$
                            and so
                            $$I=int frac{1+x^4}{(1-x^4)^{3/2}}dx=int d,([f(x)]^{-1/2})=[f(x)]^{-1/2}+c=(x^{-2}-x^{2})^{-1/2}+c=frac{x}{(1-x^4)^{1/2}}+c$$



                            For the next in the pattern we have
                            begin{align*}
                            I&=intfrac{1+x^6}{(1-x^6)^{4/3}}dx=intfrac{(1+x^6)/x^4}{(1-x^6)^{4/3}/x^4}dx=intfrac{x^{-4}+x^2}{(x^{-3}-x^3)^{4/3}}dx\
                            &=int dleft((x^{-3}-x^3)^{-1/3}right)=(x^{-3}-x^3)^{-1/3}+c=frac{x}{(1-x^6)^{1/3}}+c
                            end{align*}
                            In general we have (with $f(x)=x^{-n}-x^{n}$, $f'(x)=-ncdot(x^{-(n+1)}+x^{n-1})$, $a=-frac{1}{n}$)
                            begin{align*}
                            I&=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=intfrac{(1+x^{2n})/x^{(n+1)}}{(1-x^{2n})^{(n+1)/n}/x^{(n+1)}}dx=int-frac{1}{n}cdotfrac{left(-ncdot(x^{-{(n+1)}}+x^{n-1})right)}{(x^{-n}-x^{n})^{(n+1)/n}}dx\
                            &=int dleft((x^{-n}-x^n)^{-1/n}right)=(x^{-n}-x^n)^{-1/n}+c=frac{x}{(1-x^{2n})^{1/n}}+c
                            end{align*}
                            giving the general result:
                            begin{equation}
                            I=intfrac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=frac{x}{(1-x^{2n})^{1/n}}+c
                            end{equation}







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Jul 30 '18 at 22:57

























                            answered Jul 22 '18 at 0:57









                            Daniel BuckDaniel Buck

                            2,8281725




                            2,8281725























                                1












                                $begingroup$

                                This is an elementary method for begigners. It can be done with simple algebraic manipulation.



                                $frac{1+x^4}{(1-x^4)^{3/2}}=frac{2x^4}{(1-x^4)^{3/2}}+(1-x^4)^{-1/2}= x.[(1-x^4)^{-1/2}]'+ x'.(1-x^4)^{-1/2}=[x(1-x^4)^{-1/2}]'$



                                $$int frac{1+x^4}{(1-x^4)^{3/2}} = x(1-x^4)^{-1/2}+c$$






                                share|cite|improve this answer











                                $endgroup$


















                                  1












                                  $begingroup$

                                  This is an elementary method for begigners. It can be done with simple algebraic manipulation.



                                  $frac{1+x^4}{(1-x^4)^{3/2}}=frac{2x^4}{(1-x^4)^{3/2}}+(1-x^4)^{-1/2}= x.[(1-x^4)^{-1/2}]'+ x'.(1-x^4)^{-1/2}=[x(1-x^4)^{-1/2}]'$



                                  $$int frac{1+x^4}{(1-x^4)^{3/2}} = x(1-x^4)^{-1/2}+c$$






                                  share|cite|improve this answer











                                  $endgroup$
















                                    1












                                    1








                                    1





                                    $begingroup$

                                    This is an elementary method for begigners. It can be done with simple algebraic manipulation.



                                    $frac{1+x^4}{(1-x^4)^{3/2}}=frac{2x^4}{(1-x^4)^{3/2}}+(1-x^4)^{-1/2}= x.[(1-x^4)^{-1/2}]'+ x'.(1-x^4)^{-1/2}=[x(1-x^4)^{-1/2}]'$



                                    $$int frac{1+x^4}{(1-x^4)^{3/2}} = x(1-x^4)^{-1/2}+c$$






                                    share|cite|improve this answer











                                    $endgroup$



                                    This is an elementary method for begigners. It can be done with simple algebraic manipulation.



                                    $frac{1+x^4}{(1-x^4)^{3/2}}=frac{2x^4}{(1-x^4)^{3/2}}+(1-x^4)^{-1/2}= x.[(1-x^4)^{-1/2}]'+ x'.(1-x^4)^{-1/2}=[x(1-x^4)^{-1/2}]'$



                                    $$int frac{1+x^4}{(1-x^4)^{3/2}} = x(1-x^4)^{-1/2}+c$$







                                    share|cite|improve this answer














                                    share|cite|improve this answer



                                    share|cite|improve this answer








                                    edited Jul 22 '18 at 0:38

























                                    answered Jul 21 '18 at 21:31









                                    siroussirous

                                    1,6851514




                                    1,6851514






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2858747%2fhow-to-evaluate-int-frac1x41-x43-2dx%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        How do I know what Microsoft account the skydrive app is syncing to?

                                        When does type information flow backwards in C++?

                                        Grease: Live!