An inequality for exponentials
$begingroup$
Let $x_1,ldots,x_nin{bf R}$ satisfying $sum_{i=1}^nx_i=0$ and $sum_{i=1}^nx_i^2le1$.
Is it true that for every $rge 1$ one has that $sum_{i=1}^n(r^{x_i}-1)le r-1$?
If so, does anyone have a proof or a reference?
real-analysis inequality
$endgroup$
add a comment |
$begingroup$
Let $x_1,ldots,x_nin{bf R}$ satisfying $sum_{i=1}^nx_i=0$ and $sum_{i=1}^nx_i^2le1$.
Is it true that for every $rge 1$ one has that $sum_{i=1}^n(r^{x_i}-1)le r-1$?
If so, does anyone have a proof or a reference?
real-analysis inequality
$endgroup$
add a comment |
$begingroup$
Let $x_1,ldots,x_nin{bf R}$ satisfying $sum_{i=1}^nx_i=0$ and $sum_{i=1}^nx_i^2le1$.
Is it true that for every $rge 1$ one has that $sum_{i=1}^n(r^{x_i}-1)le r-1$?
If so, does anyone have a proof or a reference?
real-analysis inequality
$endgroup$
Let $x_1,ldots,x_nin{bf R}$ satisfying $sum_{i=1}^nx_i=0$ and $sum_{i=1}^nx_i^2le1$.
Is it true that for every $rge 1$ one has that $sum_{i=1}^n(r^{x_i}-1)le r-1$?
If so, does anyone have a proof or a reference?
real-analysis inequality
real-analysis inequality
asked Dec 30 '18 at 0:43
Rene SchoofRene Schoof
32114
32114
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes. Note that for $|x| leq 1$,
$$begin{align}
r^x&=1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i x^{i-2}}{i!}} \
& leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i |x|^{i-2}}{i!}} \
& leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i}{i!}} \
&=1+xlog r+(r-1-log r)x^2 \
end{align}$$
Note clearly each $|x_i| leq 1$. Thus
$$sum_{i=1}^{n}(r^{x_i}-1) leq log r sum_{i=1}^{n}{x_i}+(r-1-log r)sum_{i=1}^{n}{x_i^2} leq r-1-log r leq r-1$$
$endgroup$
$begingroup$
Yes! Thank you very much
$endgroup$
– Rene Schoof
Jan 26 at 14:11
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056410%2fan-inequality-for-exponentials%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes. Note that for $|x| leq 1$,
$$begin{align}
r^x&=1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i x^{i-2}}{i!}} \
& leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i |x|^{i-2}}{i!}} \
& leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i}{i!}} \
&=1+xlog r+(r-1-log r)x^2 \
end{align}$$
Note clearly each $|x_i| leq 1$. Thus
$$sum_{i=1}^{n}(r^{x_i}-1) leq log r sum_{i=1}^{n}{x_i}+(r-1-log r)sum_{i=1}^{n}{x_i^2} leq r-1-log r leq r-1$$
$endgroup$
$begingroup$
Yes! Thank you very much
$endgroup$
– Rene Schoof
Jan 26 at 14:11
add a comment |
$begingroup$
Yes. Note that for $|x| leq 1$,
$$begin{align}
r^x&=1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i x^{i-2}}{i!}} \
& leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i |x|^{i-2}}{i!}} \
& leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i}{i!}} \
&=1+xlog r+(r-1-log r)x^2 \
end{align}$$
Note clearly each $|x_i| leq 1$. Thus
$$sum_{i=1}^{n}(r^{x_i}-1) leq log r sum_{i=1}^{n}{x_i}+(r-1-log r)sum_{i=1}^{n}{x_i^2} leq r-1-log r leq r-1$$
$endgroup$
$begingroup$
Yes! Thank you very much
$endgroup$
– Rene Schoof
Jan 26 at 14:11
add a comment |
$begingroup$
Yes. Note that for $|x| leq 1$,
$$begin{align}
r^x&=1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i x^{i-2}}{i!}} \
& leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i |x|^{i-2}}{i!}} \
& leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i}{i!}} \
&=1+xlog r+(r-1-log r)x^2 \
end{align}$$
Note clearly each $|x_i| leq 1$. Thus
$$sum_{i=1}^{n}(r^{x_i}-1) leq log r sum_{i=1}^{n}{x_i}+(r-1-log r)sum_{i=1}^{n}{x_i^2} leq r-1-log r leq r-1$$
$endgroup$
Yes. Note that for $|x| leq 1$,
$$begin{align}
r^x&=1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i x^{i-2}}{i!}} \
& leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i |x|^{i-2}}{i!}} \
& leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i}{i!}} \
&=1+xlog r+(r-1-log r)x^2 \
end{align}$$
Note clearly each $|x_i| leq 1$. Thus
$$sum_{i=1}^{n}(r^{x_i}-1) leq log r sum_{i=1}^{n}{x_i}+(r-1-log r)sum_{i=1}^{n}{x_i^2} leq r-1-log r leq r-1$$
answered Jan 11 at 8:39
user633720user633720
1
1
$begingroup$
Yes! Thank you very much
$endgroup$
– Rene Schoof
Jan 26 at 14:11
add a comment |
$begingroup$
Yes! Thank you very much
$endgroup$
– Rene Schoof
Jan 26 at 14:11
$begingroup$
Yes! Thank you very much
$endgroup$
– Rene Schoof
Jan 26 at 14:11
$begingroup$
Yes! Thank you very much
$endgroup$
– Rene Schoof
Jan 26 at 14:11
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056410%2fan-inequality-for-exponentials%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown