Finite expectation of a random variable [duplicate]
$begingroup$
This question already has an answer here:
Explain why $E(X) = int_0^infty (1-F_X (t)) , dt$ for every nonnegative random variable $X$
3 answers
$X geq 0$ be a random variable defined on $(Omega,mathcal{F},P)$. Show that $mathbb{E}[X]<infty iff Sigma_{n=1}^infty P(X>n) < infty $.
I got the reverse direction but I am struggling with the $"implies"$ direction. So far, I have the following worked out:
$mathbb{E}[X]<infty$
$implies int_0^infty (1-F(x)) dx < infty$ (where $F$ is the distribution function of the random variable X)
$implies int_0^infty (1-P(Xleq x)) dx < infty$
$implies int_0^infty P(X>x) dx < infty$
Consider $int_0^infty P(X>x) dx$
$= Sigma_{n=1}^infty int_{n-1}^n P(X>x) dx$
This is the point I am stuck at. Any help will be deeply appreciated!
probability-theory random-variables expected-value
$endgroup$
marked as duplicate by Did
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 3 '18 at 19:14
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
Explain why $E(X) = int_0^infty (1-F_X (t)) , dt$ for every nonnegative random variable $X$
3 answers
$X geq 0$ be a random variable defined on $(Omega,mathcal{F},P)$. Show that $mathbb{E}[X]<infty iff Sigma_{n=1}^infty P(X>n) < infty $.
I got the reverse direction but I am struggling with the $"implies"$ direction. So far, I have the following worked out:
$mathbb{E}[X]<infty$
$implies int_0^infty (1-F(x)) dx < infty$ (where $F$ is the distribution function of the random variable X)
$implies int_0^infty (1-P(Xleq x)) dx < infty$
$implies int_0^infty P(X>x) dx < infty$
Consider $int_0^infty P(X>x) dx$
$= Sigma_{n=1}^infty int_{n-1}^n P(X>x) dx$
This is the point I am stuck at. Any help will be deeply appreciated!
probability-theory random-variables expected-value
$endgroup$
marked as duplicate by Did
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 3 '18 at 19:14
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
Explain why $E(X) = int_0^infty (1-F_X (t)) , dt$ for every nonnegative random variable $X$
3 answers
$X geq 0$ be a random variable defined on $(Omega,mathcal{F},P)$. Show that $mathbb{E}[X]<infty iff Sigma_{n=1}^infty P(X>n) < infty $.
I got the reverse direction but I am struggling with the $"implies"$ direction. So far, I have the following worked out:
$mathbb{E}[X]<infty$
$implies int_0^infty (1-F(x)) dx < infty$ (where $F$ is the distribution function of the random variable X)
$implies int_0^infty (1-P(Xleq x)) dx < infty$
$implies int_0^infty P(X>x) dx < infty$
Consider $int_0^infty P(X>x) dx$
$= Sigma_{n=1}^infty int_{n-1}^n P(X>x) dx$
This is the point I am stuck at. Any help will be deeply appreciated!
probability-theory random-variables expected-value
$endgroup$
This question already has an answer here:
Explain why $E(X) = int_0^infty (1-F_X (t)) , dt$ for every nonnegative random variable $X$
3 answers
$X geq 0$ be a random variable defined on $(Omega,mathcal{F},P)$. Show that $mathbb{E}[X]<infty iff Sigma_{n=1}^infty P(X>n) < infty $.
I got the reverse direction but I am struggling with the $"implies"$ direction. So far, I have the following worked out:
$mathbb{E}[X]<infty$
$implies int_0^infty (1-F(x)) dx < infty$ (where $F$ is the distribution function of the random variable X)
$implies int_0^infty (1-P(Xleq x)) dx < infty$
$implies int_0^infty P(X>x) dx < infty$
Consider $int_0^infty P(X>x) dx$
$= Sigma_{n=1}^infty int_{n-1}^n P(X>x) dx$
This is the point I am stuck at. Any help will be deeply appreciated!
This question already has an answer here:
Explain why $E(X) = int_0^infty (1-F_X (t)) , dt$ for every nonnegative random variable $X$
3 answers
probability-theory random-variables expected-value
probability-theory random-variables expected-value
asked Dec 3 '18 at 16:44
B.TB.T
815
815
marked as duplicate by Did
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 3 '18 at 19:14
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Did
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 3 '18 at 19:14
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint: $x ge sum_{n=1}^infty I_{{x ge n}} ge x-1$ for $x ge 0$, where $I_A$ is the indicator of $A$ ($1$ when $A$ is true, $0$ when $A$ is false).
$endgroup$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: $x ge sum_{n=1}^infty I_{{x ge n}} ge x-1$ for $x ge 0$, where $I_A$ is the indicator of $A$ ($1$ when $A$ is true, $0$ when $A$ is false).
$endgroup$
add a comment |
$begingroup$
Hint: $x ge sum_{n=1}^infty I_{{x ge n}} ge x-1$ for $x ge 0$, where $I_A$ is the indicator of $A$ ($1$ when $A$ is true, $0$ when $A$ is false).
$endgroup$
add a comment |
$begingroup$
Hint: $x ge sum_{n=1}^infty I_{{x ge n}} ge x-1$ for $x ge 0$, where $I_A$ is the indicator of $A$ ($1$ when $A$ is true, $0$ when $A$ is false).
$endgroup$
Hint: $x ge sum_{n=1}^infty I_{{x ge n}} ge x-1$ for $x ge 0$, where $I_A$ is the indicator of $A$ ($1$ when $A$ is true, $0$ when $A$ is false).
answered Dec 3 '18 at 16:49
Robert IsraelRobert Israel
320k23209459
320k23209459
add a comment |
add a comment |