Chain rule - Find $frac{partial z}{partial x}$ and $frac{partial z}{partial y} $ if $z=pq+qw$












0












$begingroup$



Find $frac{partial z}{partial x}$ and $frac{partial z}{partial y} $ if



$z=pq+qw$



$p=2x-y$, $q=x-2y$ and $w=-2x-2y$




Is $frac{partial z}{partial x}$ equals to:



$frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial q} frac{partial q}{partial x}+ frac{partial z}{partial w} frac{partial w}{partial x}$



Or
$frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial w} frac{partial w}{partial x}$



I can complete the solution, I need only the correct rule. Thanks










share|cite|improve this question









$endgroup$

















    0












    $begingroup$



    Find $frac{partial z}{partial x}$ and $frac{partial z}{partial y} $ if



    $z=pq+qw$



    $p=2x-y$, $q=x-2y$ and $w=-2x-2y$




    Is $frac{partial z}{partial x}$ equals to:



    $frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
    frac{partial z}{partial q} frac{partial q}{partial x}+ frac{partial z}{partial w} frac{partial w}{partial x}$



    Or
    $frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
    frac{partial z}{partial w} frac{partial w}{partial x}$



    I can complete the solution, I need only the correct rule. Thanks










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$



      Find $frac{partial z}{partial x}$ and $frac{partial z}{partial y} $ if



      $z=pq+qw$



      $p=2x-y$, $q=x-2y$ and $w=-2x-2y$




      Is $frac{partial z}{partial x}$ equals to:



      $frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
      frac{partial z}{partial q} frac{partial q}{partial x}+ frac{partial z}{partial w} frac{partial w}{partial x}$



      Or
      $frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
      frac{partial z}{partial w} frac{partial w}{partial x}$



      I can complete the solution, I need only the correct rule. Thanks










      share|cite|improve this question









      $endgroup$





      Find $frac{partial z}{partial x}$ and $frac{partial z}{partial y} $ if



      $z=pq+qw$



      $p=2x-y$, $q=x-2y$ and $w=-2x-2y$




      Is $frac{partial z}{partial x}$ equals to:



      $frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
      frac{partial z}{partial q} frac{partial q}{partial x}+ frac{partial z}{partial w} frac{partial w}{partial x}$



      Or
      $frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
      frac{partial z}{partial w} frac{partial w}{partial x}$



      I can complete the solution, I need only the correct rule. Thanks







      calculus chain-rule






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 3 '18 at 17:32









      DimaDima

      615416




      615416






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          $$frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
          frac{partial z}{partial w} frac{partial w}{partial x}$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much
            $endgroup$
            – Dima
            Dec 3 '18 at 20:00



















          1












          $begingroup$

          $frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
          frac{partial z}{partial w} frac{partial w}{partial x}=$
          , then



          $frac{partial z}{partial x}=p+w$ and



          $frac{partial z}{partial y}=-3q-2p-2w$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much, for $frac{partial z}{partial y}$ I think it is $-q-2(p+w)$, what do you think?
            $endgroup$
            – Dima
            Dec 3 '18 at 19:59










          • $begingroup$
            Thankful. no $frac{partial z}{partial w}frac{partial w}{partial y}=-2q$
            $endgroup$
            – yavar
            Dec 4 '18 at 13:58











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024392%2fchain-rule-find-frac-partial-z-partial-x-and-frac-partial-z-partia%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          $$frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
          frac{partial z}{partial w} frac{partial w}{partial x}$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much
            $endgroup$
            – Dima
            Dec 3 '18 at 20:00
















          1












          $begingroup$

          $$frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
          frac{partial z}{partial w} frac{partial w}{partial x}$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much
            $endgroup$
            – Dima
            Dec 3 '18 at 20:00














          1












          1








          1





          $begingroup$

          $$frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
          frac{partial z}{partial w} frac{partial w}{partial x}$$






          share|cite|improve this answer









          $endgroup$



          $$frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
          frac{partial z}{partial w} frac{partial w}{partial x}$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 3 '18 at 17:37









          Anubhab GhosalAnubhab Ghosal

          81618




          81618












          • $begingroup$
            Thank you so much
            $endgroup$
            – Dima
            Dec 3 '18 at 20:00


















          • $begingroup$
            Thank you so much
            $endgroup$
            – Dima
            Dec 3 '18 at 20:00
















          $begingroup$
          Thank you so much
          $endgroup$
          – Dima
          Dec 3 '18 at 20:00




          $begingroup$
          Thank you so much
          $endgroup$
          – Dima
          Dec 3 '18 at 20:00











          1












          $begingroup$

          $frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
          frac{partial z}{partial w} frac{partial w}{partial x}=$
          , then



          $frac{partial z}{partial x}=p+w$ and



          $frac{partial z}{partial y}=-3q-2p-2w$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much, for $frac{partial z}{partial y}$ I think it is $-q-2(p+w)$, what do you think?
            $endgroup$
            – Dima
            Dec 3 '18 at 19:59










          • $begingroup$
            Thankful. no $frac{partial z}{partial w}frac{partial w}{partial y}=-2q$
            $endgroup$
            – yavar
            Dec 4 '18 at 13:58
















          1












          $begingroup$

          $frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
          frac{partial z}{partial w} frac{partial w}{partial x}=$
          , then



          $frac{partial z}{partial x}=p+w$ and



          $frac{partial z}{partial y}=-3q-2p-2w$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much, for $frac{partial z}{partial y}$ I think it is $-q-2(p+w)$, what do you think?
            $endgroup$
            – Dima
            Dec 3 '18 at 19:59










          • $begingroup$
            Thankful. no $frac{partial z}{partial w}frac{partial w}{partial y}=-2q$
            $endgroup$
            – yavar
            Dec 4 '18 at 13:58














          1












          1








          1





          $begingroup$

          $frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
          frac{partial z}{partial w} frac{partial w}{partial x}=$
          , then



          $frac{partial z}{partial x}=p+w$ and



          $frac{partial z}{partial y}=-3q-2p-2w$






          share|cite|improve this answer









          $endgroup$



          $frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
          frac{partial z}{partial w} frac{partial w}{partial x}=$
          , then



          $frac{partial z}{partial x}=p+w$ and



          $frac{partial z}{partial y}=-3q-2p-2w$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 3 '18 at 19:57









          yavaryavar

          843




          843












          • $begingroup$
            Thank you so much, for $frac{partial z}{partial y}$ I think it is $-q-2(p+w)$, what do you think?
            $endgroup$
            – Dima
            Dec 3 '18 at 19:59










          • $begingroup$
            Thankful. no $frac{partial z}{partial w}frac{partial w}{partial y}=-2q$
            $endgroup$
            – yavar
            Dec 4 '18 at 13:58


















          • $begingroup$
            Thank you so much, for $frac{partial z}{partial y}$ I think it is $-q-2(p+w)$, what do you think?
            $endgroup$
            – Dima
            Dec 3 '18 at 19:59










          • $begingroup$
            Thankful. no $frac{partial z}{partial w}frac{partial w}{partial y}=-2q$
            $endgroup$
            – yavar
            Dec 4 '18 at 13:58
















          $begingroup$
          Thank you so much, for $frac{partial z}{partial y}$ I think it is $-q-2(p+w)$, what do you think?
          $endgroup$
          – Dima
          Dec 3 '18 at 19:59




          $begingroup$
          Thank you so much, for $frac{partial z}{partial y}$ I think it is $-q-2(p+w)$, what do you think?
          $endgroup$
          – Dima
          Dec 3 '18 at 19:59












          $begingroup$
          Thankful. no $frac{partial z}{partial w}frac{partial w}{partial y}=-2q$
          $endgroup$
          – yavar
          Dec 4 '18 at 13:58




          $begingroup$
          Thankful. no $frac{partial z}{partial w}frac{partial w}{partial y}=-2q$
          $endgroup$
          – yavar
          Dec 4 '18 at 13:58


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024392%2fchain-rule-find-frac-partial-z-partial-x-and-frac-partial-z-partia%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Probability when a professor distributes a quiz and homework assignment to a class of n students.

          Aardman Animations

          Are they similar matrix