Chain rule - Find $frac{partial z}{partial x}$ and $frac{partial z}{partial y} $ if $z=pq+qw$
$begingroup$
Find $frac{partial z}{partial x}$ and $frac{partial z}{partial y} $ if
$z=pq+qw$
$p=2x-y$, $q=x-2y$ and $w=-2x-2y$
Is $frac{partial z}{partial x}$ equals to:
$frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial q} frac{partial q}{partial x}+ frac{partial z}{partial w} frac{partial w}{partial x}$
Or
$frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial w} frac{partial w}{partial x}$
I can complete the solution, I need only the correct rule. Thanks
calculus chain-rule
$endgroup$
add a comment |
$begingroup$
Find $frac{partial z}{partial x}$ and $frac{partial z}{partial y} $ if
$z=pq+qw$
$p=2x-y$, $q=x-2y$ and $w=-2x-2y$
Is $frac{partial z}{partial x}$ equals to:
$frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial q} frac{partial q}{partial x}+ frac{partial z}{partial w} frac{partial w}{partial x}$
Or
$frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial w} frac{partial w}{partial x}$
I can complete the solution, I need only the correct rule. Thanks
calculus chain-rule
$endgroup$
add a comment |
$begingroup$
Find $frac{partial z}{partial x}$ and $frac{partial z}{partial y} $ if
$z=pq+qw$
$p=2x-y$, $q=x-2y$ and $w=-2x-2y$
Is $frac{partial z}{partial x}$ equals to:
$frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial q} frac{partial q}{partial x}+ frac{partial z}{partial w} frac{partial w}{partial x}$
Or
$frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial w} frac{partial w}{partial x}$
I can complete the solution, I need only the correct rule. Thanks
calculus chain-rule
$endgroup$
Find $frac{partial z}{partial x}$ and $frac{partial z}{partial y} $ if
$z=pq+qw$
$p=2x-y$, $q=x-2y$ and $w=-2x-2y$
Is $frac{partial z}{partial x}$ equals to:
$frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial q} frac{partial q}{partial x}+ frac{partial z}{partial w} frac{partial w}{partial x}$
Or
$frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial w} frac{partial w}{partial x}$
I can complete the solution, I need only the correct rule. Thanks
calculus chain-rule
calculus chain-rule
asked Dec 3 '18 at 17:32
DimaDima
615416
615416
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial w} frac{partial w}{partial x}$$
$endgroup$
$begingroup$
Thank you so much
$endgroup$
– Dima
Dec 3 '18 at 20:00
add a comment |
$begingroup$
$frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial w} frac{partial w}{partial x}=$, then
$frac{partial z}{partial x}=p+w$ and
$frac{partial z}{partial y}=-3q-2p-2w$
$endgroup$
$begingroup$
Thank you so much, for $frac{partial z}{partial y}$ I think it is $-q-2(p+w)$, what do you think?
$endgroup$
– Dima
Dec 3 '18 at 19:59
$begingroup$
Thankful. no $frac{partial z}{partial w}frac{partial w}{partial y}=-2q$
$endgroup$
– yavar
Dec 4 '18 at 13:58
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024392%2fchain-rule-find-frac-partial-z-partial-x-and-frac-partial-z-partia%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial w} frac{partial w}{partial x}$$
$endgroup$
$begingroup$
Thank you so much
$endgroup$
– Dima
Dec 3 '18 at 20:00
add a comment |
$begingroup$
$$frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial w} frac{partial w}{partial x}$$
$endgroup$
$begingroup$
Thank you so much
$endgroup$
– Dima
Dec 3 '18 at 20:00
add a comment |
$begingroup$
$$frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial w} frac{partial w}{partial x}$$
$endgroup$
$$frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial w} frac{partial w}{partial x}$$
answered Dec 3 '18 at 17:37
Anubhab GhosalAnubhab Ghosal
81618
81618
$begingroup$
Thank you so much
$endgroup$
– Dima
Dec 3 '18 at 20:00
add a comment |
$begingroup$
Thank you so much
$endgroup$
– Dima
Dec 3 '18 at 20:00
$begingroup$
Thank you so much
$endgroup$
– Dima
Dec 3 '18 at 20:00
$begingroup$
Thank you so much
$endgroup$
– Dima
Dec 3 '18 at 20:00
add a comment |
$begingroup$
$frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial w} frac{partial w}{partial x}=$, then
$frac{partial z}{partial x}=p+w$ and
$frac{partial z}{partial y}=-3q-2p-2w$
$endgroup$
$begingroup$
Thank you so much, for $frac{partial z}{partial y}$ I think it is $-q-2(p+w)$, what do you think?
$endgroup$
– Dima
Dec 3 '18 at 19:59
$begingroup$
Thankful. no $frac{partial z}{partial w}frac{partial w}{partial y}=-2q$
$endgroup$
– yavar
Dec 4 '18 at 13:58
add a comment |
$begingroup$
$frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial w} frac{partial w}{partial x}=$, then
$frac{partial z}{partial x}=p+w$ and
$frac{partial z}{partial y}=-3q-2p-2w$
$endgroup$
$begingroup$
Thank you so much, for $frac{partial z}{partial y}$ I think it is $-q-2(p+w)$, what do you think?
$endgroup$
– Dima
Dec 3 '18 at 19:59
$begingroup$
Thankful. no $frac{partial z}{partial w}frac{partial w}{partial y}=-2q$
$endgroup$
– yavar
Dec 4 '18 at 13:58
add a comment |
$begingroup$
$frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial w} frac{partial w}{partial x}=$, then
$frac{partial z}{partial x}=p+w$ and
$frac{partial z}{partial y}=-3q-2p-2w$
$endgroup$
$frac{partial z}{partial x}=frac{partial z}{partial p} frac{partial p}{partial x}+ frac{partial z}{partial q} frac{partial q}{partial x}+
frac{partial z}{partial w} frac{partial w}{partial x}=$, then
$frac{partial z}{partial x}=p+w$ and
$frac{partial z}{partial y}=-3q-2p-2w$
answered Dec 3 '18 at 19:57
yavaryavar
843
843
$begingroup$
Thank you so much, for $frac{partial z}{partial y}$ I think it is $-q-2(p+w)$, what do you think?
$endgroup$
– Dima
Dec 3 '18 at 19:59
$begingroup$
Thankful. no $frac{partial z}{partial w}frac{partial w}{partial y}=-2q$
$endgroup$
– yavar
Dec 4 '18 at 13:58
add a comment |
$begingroup$
Thank you so much, for $frac{partial z}{partial y}$ I think it is $-q-2(p+w)$, what do you think?
$endgroup$
– Dima
Dec 3 '18 at 19:59
$begingroup$
Thankful. no $frac{partial z}{partial w}frac{partial w}{partial y}=-2q$
$endgroup$
– yavar
Dec 4 '18 at 13:58
$begingroup$
Thank you so much, for $frac{partial z}{partial y}$ I think it is $-q-2(p+w)$, what do you think?
$endgroup$
– Dima
Dec 3 '18 at 19:59
$begingroup$
Thank you so much, for $frac{partial z}{partial y}$ I think it is $-q-2(p+w)$, what do you think?
$endgroup$
– Dima
Dec 3 '18 at 19:59
$begingroup$
Thankful. no $frac{partial z}{partial w}frac{partial w}{partial y}=-2q$
$endgroup$
– yavar
Dec 4 '18 at 13:58
$begingroup$
Thankful. no $frac{partial z}{partial w}frac{partial w}{partial y}=-2q$
$endgroup$
– yavar
Dec 4 '18 at 13:58
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024392%2fchain-rule-find-frac-partial-z-partial-x-and-frac-partial-z-partia%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown