How do I show that the system is hyperbolic if $u^2 + v^2 > c^2$
I know that for a system to be hyperbolic it must have 2 real distinct eigenvalues $lambda$ where $det(B-lambda A)=0$. My system of equations are:
begin{aligned}
(pu)_x + (pv)_y &= 0 \
p(uu_x + vu_y) + c(p)^2p_x &= 0 \
p(uv_x +vv_y)+c(p)^2p_y &= 0
end{aligned}
I need to show that the system is hyperbolic if $u^2 + v^2 > c^2$. I am stuck on how to formulate the matrices $A,B$. Could someone please help?
pde systems-of-equations hyperbolic-equations
add a comment |
I know that for a system to be hyperbolic it must have 2 real distinct eigenvalues $lambda$ where $det(B-lambda A)=0$. My system of equations are:
begin{aligned}
(pu)_x + (pv)_y &= 0 \
p(uu_x + vu_y) + c(p)^2p_x &= 0 \
p(uv_x +vv_y)+c(p)^2p_y &= 0
end{aligned}
I need to show that the system is hyperbolic if $u^2 + v^2 > c^2$. I am stuck on how to formulate the matrices $A,B$. Could someone please help?
pde systems-of-equations hyperbolic-equations
add a comment |
I know that for a system to be hyperbolic it must have 2 real distinct eigenvalues $lambda$ where $det(B-lambda A)=0$. My system of equations are:
begin{aligned}
(pu)_x + (pv)_y &= 0 \
p(uu_x + vu_y) + c(p)^2p_x &= 0 \
p(uv_x +vv_y)+c(p)^2p_y &= 0
end{aligned}
I need to show that the system is hyperbolic if $u^2 + v^2 > c^2$. I am stuck on how to formulate the matrices $A,B$. Could someone please help?
pde systems-of-equations hyperbolic-equations
I know that for a system to be hyperbolic it must have 2 real distinct eigenvalues $lambda$ where $det(B-lambda A)=0$. My system of equations are:
begin{aligned}
(pu)_x + (pv)_y &= 0 \
p(uu_x + vu_y) + c(p)^2p_x &= 0 \
p(uv_x +vv_y)+c(p)^2p_y &= 0
end{aligned}
I need to show that the system is hyperbolic if $u^2 + v^2 > c^2$. I am stuck on how to formulate the matrices $A,B$. Could someone please help?
pde systems-of-equations hyperbolic-equations
pde systems-of-equations hyperbolic-equations
edited Dec 14 at 15:18
Harry49
5,99121031
5,99121031
asked Nov 26 at 23:18
pablo_mathscobar
836
836
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
In order for the system to be hyperbolic, it needs to have $n$ distinct real eigenvalues if you are working with $n$ dependent variables. In this case, $n=3$.
The first thing to do is to write it in the form
$$mathbf Afrac{partial mathbf u}{partial x} + mathbf Bfrac{partial mathbf u}{partial y} = mathbf c$$
where $mathbf u = (p,u,v)^T$ is the vector of dependent variables.
All you need to do is expand out the derivatives in the given equations and write them out neatly:
begin{matrix}
up_x & + & pu_x & + & & & vp_y & + & & & pv_y & = & 0 \
c^2p_x & + & puu_x & + & & & & & pvu_y & & & = & 0 \
& & & & puv_x & + & c^2p_y & + & & & pvv_y & = & 0
end{matrix}
Notice how I have arranged each equation in the order $p_x$, $u_x$, $v_x$, $p_y$, $u_y$, $v_y$. We can now write it in the form as previously mentioned:
$$
begin{pmatrix}
u & p & 0 \
c^2 & pu & 0 \
0 & 0 & pu
end{pmatrix}frac{partial}{partial x} begin{pmatrix} p \ u \ vend{pmatrix} + begin{pmatrix}
v & 0 & p \
0 & pv & 0 \
c^2 & 0 & pv
end{pmatrix}frac{partial}{partial y} begin{pmatrix} p \ u \ vend{pmatrix} = 0
$$
There you have your $mathbf A$ and $mathbf B$, and the next step should be straightforward.
You then compute $text{det}(mathbf B- lambda mathbf A)$:
begin{align}
text{det}(mathbf B- lambda mathbf A) = & text{det} begin{pmatrix} v - lambda u & - lambda p & p \ -lambda c^2 & pv-lambda pu & 0 \ c^2 & 0 & pv - lambda pu end{pmatrix} \
= & (v-lambda u)(pv-lambda pu)(pv-lambda pu)-p(pv-lambda pu)c^2-(pv-lambda pu)(-lambda p)(-lambda c^2) \
= & p^2(v-lambda u)big[(v-lambda u)^2-c^2-lambda ^2 c^2big] \
= & p^2(v-lambda u)big[(u^2-c^2)lambda^2-2uvlambda+v^2-c^2big]
end{align}
Set this to $0$ and solve for $lambda$:
begin{align}
& text{det}(mathbf B- lambda mathbf A)=0 \
implies & p^2(v-lambda u)big[(u^2-c^2)lambda^2-2uvlambda+v^2-c^2big]=0 \
implies & lambda = frac vu, frac{uvpm sqrt{u^2v^2-(u^2-c^2)(v^2-c^2)}}{u^2-c^2} \
implies & lambda = frac vu, frac{uvpm csqrt{u^2+v^2-c^2}}{u^2-c^2}
end{align}
In order for the system to by hyperbolic, these three roots must be real and distinct.
$frac vu neq frac{uvpm csqrt{u^2+v^2-c^2}}{u^2-c^2}$ because $lambda = frac vu$ does not satisfy $big[(u^2-c^2)lambda^2-2uvlambda+v^2-c^2big]=0$, whereas $frac{uv + csqrt{u^2+v^2-c^2}}{u^2-c^2} neq frac{uv - csqrt{u^2+v^2-c^2}}{u^2-c^2}$ as long as $u^2+v^2-c^2 neq 0$ (i.e. $u^2+v^2 neq c^2$).
Finally, these roots are real if the expression in the square root is non-negative, i.e. if $u^2+v^2 geq c^2$.
Hence, the system is hyperbolic if $u^2+v^2>c^2$.
hi when solving this, i get $v-lambda u=c$ where am i going wrong?
– pablo_mathscobar
Dec 12 at 16:20
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015087%2fhow-do-i-show-that-the-system-is-hyperbolic-if-u2-v2-c2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
In order for the system to be hyperbolic, it needs to have $n$ distinct real eigenvalues if you are working with $n$ dependent variables. In this case, $n=3$.
The first thing to do is to write it in the form
$$mathbf Afrac{partial mathbf u}{partial x} + mathbf Bfrac{partial mathbf u}{partial y} = mathbf c$$
where $mathbf u = (p,u,v)^T$ is the vector of dependent variables.
All you need to do is expand out the derivatives in the given equations and write them out neatly:
begin{matrix}
up_x & + & pu_x & + & & & vp_y & + & & & pv_y & = & 0 \
c^2p_x & + & puu_x & + & & & & & pvu_y & & & = & 0 \
& & & & puv_x & + & c^2p_y & + & & & pvv_y & = & 0
end{matrix}
Notice how I have arranged each equation in the order $p_x$, $u_x$, $v_x$, $p_y$, $u_y$, $v_y$. We can now write it in the form as previously mentioned:
$$
begin{pmatrix}
u & p & 0 \
c^2 & pu & 0 \
0 & 0 & pu
end{pmatrix}frac{partial}{partial x} begin{pmatrix} p \ u \ vend{pmatrix} + begin{pmatrix}
v & 0 & p \
0 & pv & 0 \
c^2 & 0 & pv
end{pmatrix}frac{partial}{partial y} begin{pmatrix} p \ u \ vend{pmatrix} = 0
$$
There you have your $mathbf A$ and $mathbf B$, and the next step should be straightforward.
You then compute $text{det}(mathbf B- lambda mathbf A)$:
begin{align}
text{det}(mathbf B- lambda mathbf A) = & text{det} begin{pmatrix} v - lambda u & - lambda p & p \ -lambda c^2 & pv-lambda pu & 0 \ c^2 & 0 & pv - lambda pu end{pmatrix} \
= & (v-lambda u)(pv-lambda pu)(pv-lambda pu)-p(pv-lambda pu)c^2-(pv-lambda pu)(-lambda p)(-lambda c^2) \
= & p^2(v-lambda u)big[(v-lambda u)^2-c^2-lambda ^2 c^2big] \
= & p^2(v-lambda u)big[(u^2-c^2)lambda^2-2uvlambda+v^2-c^2big]
end{align}
Set this to $0$ and solve for $lambda$:
begin{align}
& text{det}(mathbf B- lambda mathbf A)=0 \
implies & p^2(v-lambda u)big[(u^2-c^2)lambda^2-2uvlambda+v^2-c^2big]=0 \
implies & lambda = frac vu, frac{uvpm sqrt{u^2v^2-(u^2-c^2)(v^2-c^2)}}{u^2-c^2} \
implies & lambda = frac vu, frac{uvpm csqrt{u^2+v^2-c^2}}{u^2-c^2}
end{align}
In order for the system to by hyperbolic, these three roots must be real and distinct.
$frac vu neq frac{uvpm csqrt{u^2+v^2-c^2}}{u^2-c^2}$ because $lambda = frac vu$ does not satisfy $big[(u^2-c^2)lambda^2-2uvlambda+v^2-c^2big]=0$, whereas $frac{uv + csqrt{u^2+v^2-c^2}}{u^2-c^2} neq frac{uv - csqrt{u^2+v^2-c^2}}{u^2-c^2}$ as long as $u^2+v^2-c^2 neq 0$ (i.e. $u^2+v^2 neq c^2$).
Finally, these roots are real if the expression in the square root is non-negative, i.e. if $u^2+v^2 geq c^2$.
Hence, the system is hyperbolic if $u^2+v^2>c^2$.
hi when solving this, i get $v-lambda u=c$ where am i going wrong?
– pablo_mathscobar
Dec 12 at 16:20
add a comment |
In order for the system to be hyperbolic, it needs to have $n$ distinct real eigenvalues if you are working with $n$ dependent variables. In this case, $n=3$.
The first thing to do is to write it in the form
$$mathbf Afrac{partial mathbf u}{partial x} + mathbf Bfrac{partial mathbf u}{partial y} = mathbf c$$
where $mathbf u = (p,u,v)^T$ is the vector of dependent variables.
All you need to do is expand out the derivatives in the given equations and write them out neatly:
begin{matrix}
up_x & + & pu_x & + & & & vp_y & + & & & pv_y & = & 0 \
c^2p_x & + & puu_x & + & & & & & pvu_y & & & = & 0 \
& & & & puv_x & + & c^2p_y & + & & & pvv_y & = & 0
end{matrix}
Notice how I have arranged each equation in the order $p_x$, $u_x$, $v_x$, $p_y$, $u_y$, $v_y$. We can now write it in the form as previously mentioned:
$$
begin{pmatrix}
u & p & 0 \
c^2 & pu & 0 \
0 & 0 & pu
end{pmatrix}frac{partial}{partial x} begin{pmatrix} p \ u \ vend{pmatrix} + begin{pmatrix}
v & 0 & p \
0 & pv & 0 \
c^2 & 0 & pv
end{pmatrix}frac{partial}{partial y} begin{pmatrix} p \ u \ vend{pmatrix} = 0
$$
There you have your $mathbf A$ and $mathbf B$, and the next step should be straightforward.
You then compute $text{det}(mathbf B- lambda mathbf A)$:
begin{align}
text{det}(mathbf B- lambda mathbf A) = & text{det} begin{pmatrix} v - lambda u & - lambda p & p \ -lambda c^2 & pv-lambda pu & 0 \ c^2 & 0 & pv - lambda pu end{pmatrix} \
= & (v-lambda u)(pv-lambda pu)(pv-lambda pu)-p(pv-lambda pu)c^2-(pv-lambda pu)(-lambda p)(-lambda c^2) \
= & p^2(v-lambda u)big[(v-lambda u)^2-c^2-lambda ^2 c^2big] \
= & p^2(v-lambda u)big[(u^2-c^2)lambda^2-2uvlambda+v^2-c^2big]
end{align}
Set this to $0$ and solve for $lambda$:
begin{align}
& text{det}(mathbf B- lambda mathbf A)=0 \
implies & p^2(v-lambda u)big[(u^2-c^2)lambda^2-2uvlambda+v^2-c^2big]=0 \
implies & lambda = frac vu, frac{uvpm sqrt{u^2v^2-(u^2-c^2)(v^2-c^2)}}{u^2-c^2} \
implies & lambda = frac vu, frac{uvpm csqrt{u^2+v^2-c^2}}{u^2-c^2}
end{align}
In order for the system to by hyperbolic, these three roots must be real and distinct.
$frac vu neq frac{uvpm csqrt{u^2+v^2-c^2}}{u^2-c^2}$ because $lambda = frac vu$ does not satisfy $big[(u^2-c^2)lambda^2-2uvlambda+v^2-c^2big]=0$, whereas $frac{uv + csqrt{u^2+v^2-c^2}}{u^2-c^2} neq frac{uv - csqrt{u^2+v^2-c^2}}{u^2-c^2}$ as long as $u^2+v^2-c^2 neq 0$ (i.e. $u^2+v^2 neq c^2$).
Finally, these roots are real if the expression in the square root is non-negative, i.e. if $u^2+v^2 geq c^2$.
Hence, the system is hyperbolic if $u^2+v^2>c^2$.
hi when solving this, i get $v-lambda u=c$ where am i going wrong?
– pablo_mathscobar
Dec 12 at 16:20
add a comment |
In order for the system to be hyperbolic, it needs to have $n$ distinct real eigenvalues if you are working with $n$ dependent variables. In this case, $n=3$.
The first thing to do is to write it in the form
$$mathbf Afrac{partial mathbf u}{partial x} + mathbf Bfrac{partial mathbf u}{partial y} = mathbf c$$
where $mathbf u = (p,u,v)^T$ is the vector of dependent variables.
All you need to do is expand out the derivatives in the given equations and write them out neatly:
begin{matrix}
up_x & + & pu_x & + & & & vp_y & + & & & pv_y & = & 0 \
c^2p_x & + & puu_x & + & & & & & pvu_y & & & = & 0 \
& & & & puv_x & + & c^2p_y & + & & & pvv_y & = & 0
end{matrix}
Notice how I have arranged each equation in the order $p_x$, $u_x$, $v_x$, $p_y$, $u_y$, $v_y$. We can now write it in the form as previously mentioned:
$$
begin{pmatrix}
u & p & 0 \
c^2 & pu & 0 \
0 & 0 & pu
end{pmatrix}frac{partial}{partial x} begin{pmatrix} p \ u \ vend{pmatrix} + begin{pmatrix}
v & 0 & p \
0 & pv & 0 \
c^2 & 0 & pv
end{pmatrix}frac{partial}{partial y} begin{pmatrix} p \ u \ vend{pmatrix} = 0
$$
There you have your $mathbf A$ and $mathbf B$, and the next step should be straightforward.
You then compute $text{det}(mathbf B- lambda mathbf A)$:
begin{align}
text{det}(mathbf B- lambda mathbf A) = & text{det} begin{pmatrix} v - lambda u & - lambda p & p \ -lambda c^2 & pv-lambda pu & 0 \ c^2 & 0 & pv - lambda pu end{pmatrix} \
= & (v-lambda u)(pv-lambda pu)(pv-lambda pu)-p(pv-lambda pu)c^2-(pv-lambda pu)(-lambda p)(-lambda c^2) \
= & p^2(v-lambda u)big[(v-lambda u)^2-c^2-lambda ^2 c^2big] \
= & p^2(v-lambda u)big[(u^2-c^2)lambda^2-2uvlambda+v^2-c^2big]
end{align}
Set this to $0$ and solve for $lambda$:
begin{align}
& text{det}(mathbf B- lambda mathbf A)=0 \
implies & p^2(v-lambda u)big[(u^2-c^2)lambda^2-2uvlambda+v^2-c^2big]=0 \
implies & lambda = frac vu, frac{uvpm sqrt{u^2v^2-(u^2-c^2)(v^2-c^2)}}{u^2-c^2} \
implies & lambda = frac vu, frac{uvpm csqrt{u^2+v^2-c^2}}{u^2-c^2}
end{align}
In order for the system to by hyperbolic, these three roots must be real and distinct.
$frac vu neq frac{uvpm csqrt{u^2+v^2-c^2}}{u^2-c^2}$ because $lambda = frac vu$ does not satisfy $big[(u^2-c^2)lambda^2-2uvlambda+v^2-c^2big]=0$, whereas $frac{uv + csqrt{u^2+v^2-c^2}}{u^2-c^2} neq frac{uv - csqrt{u^2+v^2-c^2}}{u^2-c^2}$ as long as $u^2+v^2-c^2 neq 0$ (i.e. $u^2+v^2 neq c^2$).
Finally, these roots are real if the expression in the square root is non-negative, i.e. if $u^2+v^2 geq c^2$.
Hence, the system is hyperbolic if $u^2+v^2>c^2$.
In order for the system to be hyperbolic, it needs to have $n$ distinct real eigenvalues if you are working with $n$ dependent variables. In this case, $n=3$.
The first thing to do is to write it in the form
$$mathbf Afrac{partial mathbf u}{partial x} + mathbf Bfrac{partial mathbf u}{partial y} = mathbf c$$
where $mathbf u = (p,u,v)^T$ is the vector of dependent variables.
All you need to do is expand out the derivatives in the given equations and write them out neatly:
begin{matrix}
up_x & + & pu_x & + & & & vp_y & + & & & pv_y & = & 0 \
c^2p_x & + & puu_x & + & & & & & pvu_y & & & = & 0 \
& & & & puv_x & + & c^2p_y & + & & & pvv_y & = & 0
end{matrix}
Notice how I have arranged each equation in the order $p_x$, $u_x$, $v_x$, $p_y$, $u_y$, $v_y$. We can now write it in the form as previously mentioned:
$$
begin{pmatrix}
u & p & 0 \
c^2 & pu & 0 \
0 & 0 & pu
end{pmatrix}frac{partial}{partial x} begin{pmatrix} p \ u \ vend{pmatrix} + begin{pmatrix}
v & 0 & p \
0 & pv & 0 \
c^2 & 0 & pv
end{pmatrix}frac{partial}{partial y} begin{pmatrix} p \ u \ vend{pmatrix} = 0
$$
There you have your $mathbf A$ and $mathbf B$, and the next step should be straightforward.
You then compute $text{det}(mathbf B- lambda mathbf A)$:
begin{align}
text{det}(mathbf B- lambda mathbf A) = & text{det} begin{pmatrix} v - lambda u & - lambda p & p \ -lambda c^2 & pv-lambda pu & 0 \ c^2 & 0 & pv - lambda pu end{pmatrix} \
= & (v-lambda u)(pv-lambda pu)(pv-lambda pu)-p(pv-lambda pu)c^2-(pv-lambda pu)(-lambda p)(-lambda c^2) \
= & p^2(v-lambda u)big[(v-lambda u)^2-c^2-lambda ^2 c^2big] \
= & p^2(v-lambda u)big[(u^2-c^2)lambda^2-2uvlambda+v^2-c^2big]
end{align}
Set this to $0$ and solve for $lambda$:
begin{align}
& text{det}(mathbf B- lambda mathbf A)=0 \
implies & p^2(v-lambda u)big[(u^2-c^2)lambda^2-2uvlambda+v^2-c^2big]=0 \
implies & lambda = frac vu, frac{uvpm sqrt{u^2v^2-(u^2-c^2)(v^2-c^2)}}{u^2-c^2} \
implies & lambda = frac vu, frac{uvpm csqrt{u^2+v^2-c^2}}{u^2-c^2}
end{align}
In order for the system to by hyperbolic, these three roots must be real and distinct.
$frac vu neq frac{uvpm csqrt{u^2+v^2-c^2}}{u^2-c^2}$ because $lambda = frac vu$ does not satisfy $big[(u^2-c^2)lambda^2-2uvlambda+v^2-c^2big]=0$, whereas $frac{uv + csqrt{u^2+v^2-c^2}}{u^2-c^2} neq frac{uv - csqrt{u^2+v^2-c^2}}{u^2-c^2}$ as long as $u^2+v^2-c^2 neq 0$ (i.e. $u^2+v^2 neq c^2$).
Finally, these roots are real if the expression in the square root is non-negative, i.e. if $u^2+v^2 geq c^2$.
Hence, the system is hyperbolic if $u^2+v^2>c^2$.
edited Dec 13 at 5:56
answered Nov 27 at 0:02
glowstonetrees
2,285317
2,285317
hi when solving this, i get $v-lambda u=c$ where am i going wrong?
– pablo_mathscobar
Dec 12 at 16:20
add a comment |
hi when solving this, i get $v-lambda u=c$ where am i going wrong?
– pablo_mathscobar
Dec 12 at 16:20
hi when solving this, i get $v-lambda u=c$ where am i going wrong?
– pablo_mathscobar
Dec 12 at 16:20
hi when solving this, i get $v-lambda u=c$ where am i going wrong?
– pablo_mathscobar
Dec 12 at 16:20
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015087%2fhow-do-i-show-that-the-system-is-hyperbolic-if-u2-v2-c2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown