Given $5$ white balls, $8$ green balls and $7$ red balls. Find the probability of drawing a white ball then a...











up vote
2
down vote

favorite












Given $5$ white balls, $8$ green balls and $7$ red balls in an urn. Find out the probability to draw a white ball and then a green one if the drawing is done consecutively and after drawing the ball is returned into the urn.



What I ended up with as an answer is $1/20$ by taking the chance for drawing a white ball and multiplying it by the chance to get a green ball and then dividing by two, since I only want the case where the white ball is first, which I assume is half the cases.










share|cite|improve this question




























    up vote
    2
    down vote

    favorite












    Given $5$ white balls, $8$ green balls and $7$ red balls in an urn. Find out the probability to draw a white ball and then a green one if the drawing is done consecutively and after drawing the ball is returned into the urn.



    What I ended up with as an answer is $1/20$ by taking the chance for drawing a white ball and multiplying it by the chance to get a green ball and then dividing by two, since I only want the case where the white ball is first, which I assume is half the cases.










    share|cite|improve this question


























      up vote
      2
      down vote

      favorite









      up vote
      2
      down vote

      favorite











      Given $5$ white balls, $8$ green balls and $7$ red balls in an urn. Find out the probability to draw a white ball and then a green one if the drawing is done consecutively and after drawing the ball is returned into the urn.



      What I ended up with as an answer is $1/20$ by taking the chance for drawing a white ball and multiplying it by the chance to get a green ball and then dividing by two, since I only want the case where the white ball is first, which I assume is half the cases.










      share|cite|improve this question















      Given $5$ white balls, $8$ green balls and $7$ red balls in an urn. Find out the probability to draw a white ball and then a green one if the drawing is done consecutively and after drawing the ball is returned into the urn.



      What I ended up with as an answer is $1/20$ by taking the chance for drawing a white ball and multiplying it by the chance to get a green ball and then dividing by two, since I only want the case where the white ball is first, which I assume is half the cases.







      probability combinatorics






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 21 at 20:13









      N. F. Taussig

      43.1k93254




      43.1k93254










      asked Nov 21 at 20:07









      Sartr

      949




      949






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          4
          down vote



          accepted










          There is no need to divide by $2$. You need to multiply the probability of drawing a white ball on the first draw by the probability of drawing a green ball on the second draw. Since the draws are independent and the first ball is replaced, the probability of drawing a green ball on the second draw given that a white ball was drawn on the first draw is just the probability of drawing a green ball from the urn. Hence,
          $$Pr(text{drawing white, then green}) = Pr(W)Pr(G mid W) = Pr(W)Pr(G) = frac{5}{20} cdot frac{8}{20} = frac{1}{10}$$






          share|cite|improve this answer




























            up vote
            1
            down vote













            First you calculate the probability of getting a white ball. $$P(white)=frac{Number of white balls}{Total number of balls} = frac{5}{20}$$

            Then the probability of getting a green ball is $$P(green)=frac{Number of green balls}{Total number of balls} = frac{8}{20}$$

            Because you put the ball back in the urn all the probabilities are independant

            Thus $$P(White then Green) = P(White)*P_{White}(Green) = P(White)*P(Green) = frac{5*8}{20*20} = frac{1}{10}$$






            share|cite|improve this answer





















              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008279%2fgiven-5-white-balls-8-green-balls-and-7-red-balls-find-the-probability-o%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              4
              down vote



              accepted










              There is no need to divide by $2$. You need to multiply the probability of drawing a white ball on the first draw by the probability of drawing a green ball on the second draw. Since the draws are independent and the first ball is replaced, the probability of drawing a green ball on the second draw given that a white ball was drawn on the first draw is just the probability of drawing a green ball from the urn. Hence,
              $$Pr(text{drawing white, then green}) = Pr(W)Pr(G mid W) = Pr(W)Pr(G) = frac{5}{20} cdot frac{8}{20} = frac{1}{10}$$






              share|cite|improve this answer

























                up vote
                4
                down vote



                accepted










                There is no need to divide by $2$. You need to multiply the probability of drawing a white ball on the first draw by the probability of drawing a green ball on the second draw. Since the draws are independent and the first ball is replaced, the probability of drawing a green ball on the second draw given that a white ball was drawn on the first draw is just the probability of drawing a green ball from the urn. Hence,
                $$Pr(text{drawing white, then green}) = Pr(W)Pr(G mid W) = Pr(W)Pr(G) = frac{5}{20} cdot frac{8}{20} = frac{1}{10}$$






                share|cite|improve this answer























                  up vote
                  4
                  down vote



                  accepted







                  up vote
                  4
                  down vote



                  accepted






                  There is no need to divide by $2$. You need to multiply the probability of drawing a white ball on the first draw by the probability of drawing a green ball on the second draw. Since the draws are independent and the first ball is replaced, the probability of drawing a green ball on the second draw given that a white ball was drawn on the first draw is just the probability of drawing a green ball from the urn. Hence,
                  $$Pr(text{drawing white, then green}) = Pr(W)Pr(G mid W) = Pr(W)Pr(G) = frac{5}{20} cdot frac{8}{20} = frac{1}{10}$$






                  share|cite|improve this answer












                  There is no need to divide by $2$. You need to multiply the probability of drawing a white ball on the first draw by the probability of drawing a green ball on the second draw. Since the draws are independent and the first ball is replaced, the probability of drawing a green ball on the second draw given that a white ball was drawn on the first draw is just the probability of drawing a green ball from the urn. Hence,
                  $$Pr(text{drawing white, then green}) = Pr(W)Pr(G mid W) = Pr(W)Pr(G) = frac{5}{20} cdot frac{8}{20} = frac{1}{10}$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 21 at 20:18









                  N. F. Taussig

                  43.1k93254




                  43.1k93254






















                      up vote
                      1
                      down vote













                      First you calculate the probability of getting a white ball. $$P(white)=frac{Number of white balls}{Total number of balls} = frac{5}{20}$$

                      Then the probability of getting a green ball is $$P(green)=frac{Number of green balls}{Total number of balls} = frac{8}{20}$$

                      Because you put the ball back in the urn all the probabilities are independant

                      Thus $$P(White then Green) = P(White)*P_{White}(Green) = P(White)*P(Green) = frac{5*8}{20*20} = frac{1}{10}$$






                      share|cite|improve this answer

























                        up vote
                        1
                        down vote













                        First you calculate the probability of getting a white ball. $$P(white)=frac{Number of white balls}{Total number of balls} = frac{5}{20}$$

                        Then the probability of getting a green ball is $$P(green)=frac{Number of green balls}{Total number of balls} = frac{8}{20}$$

                        Because you put the ball back in the urn all the probabilities are independant

                        Thus $$P(White then Green) = P(White)*P_{White}(Green) = P(White)*P(Green) = frac{5*8}{20*20} = frac{1}{10}$$






                        share|cite|improve this answer























                          up vote
                          1
                          down vote










                          up vote
                          1
                          down vote









                          First you calculate the probability of getting a white ball. $$P(white)=frac{Number of white balls}{Total number of balls} = frac{5}{20}$$

                          Then the probability of getting a green ball is $$P(green)=frac{Number of green balls}{Total number of balls} = frac{8}{20}$$

                          Because you put the ball back in the urn all the probabilities are independant

                          Thus $$P(White then Green) = P(White)*P_{White}(Green) = P(White)*P(Green) = frac{5*8}{20*20} = frac{1}{10}$$






                          share|cite|improve this answer












                          First you calculate the probability of getting a white ball. $$P(white)=frac{Number of white balls}{Total number of balls} = frac{5}{20}$$

                          Then the probability of getting a green ball is $$P(green)=frac{Number of green balls}{Total number of balls} = frac{8}{20}$$

                          Because you put the ball back in the urn all the probabilities are independant

                          Thus $$P(White then Green) = P(White)*P_{White}(Green) = P(White)*P(Green) = frac{5*8}{20*20} = frac{1}{10}$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Nov 21 at 20:22









                          TheD0ubleT

                          37318




                          37318






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008279%2fgiven-5-white-balls-8-green-balls-and-7-red-balls-find-the-probability-o%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Probability when a professor distributes a quiz and homework assignment to a class of n students.

                              Aardman Animations

                              Are they similar matrix