Find $limlimits_{ntoinfty}{e^n - e^{frac1n + n}}$
up vote
1
down vote
favorite
So far I've tried: $${e^n - e^{frac1n + n}} = e^n(1- e^{frac1n}).$$ Then appling l'Hopitals rule to $$limlimits_{ntoinfty} e^n(1- e^{frac1n}) = limlimits_{ntoinfty} dfrac{(1- e^{frac1n})}{e^{-n}},$$ I have not found success. Is there another way to manipulate the expression to be able to apply l'Hopitals? I know the limit should approach -$infty$. To clarify, I can use l'Hopital.
calculus limits
add a comment |
up vote
1
down vote
favorite
So far I've tried: $${e^n - e^{frac1n + n}} = e^n(1- e^{frac1n}).$$ Then appling l'Hopitals rule to $$limlimits_{ntoinfty} e^n(1- e^{frac1n}) = limlimits_{ntoinfty} dfrac{(1- e^{frac1n})}{e^{-n}},$$ I have not found success. Is there another way to manipulate the expression to be able to apply l'Hopitals? I know the limit should approach -$infty$. To clarify, I can use l'Hopital.
calculus limits
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
So far I've tried: $${e^n - e^{frac1n + n}} = e^n(1- e^{frac1n}).$$ Then appling l'Hopitals rule to $$limlimits_{ntoinfty} e^n(1- e^{frac1n}) = limlimits_{ntoinfty} dfrac{(1- e^{frac1n})}{e^{-n}},$$ I have not found success. Is there another way to manipulate the expression to be able to apply l'Hopitals? I know the limit should approach -$infty$. To clarify, I can use l'Hopital.
calculus limits
So far I've tried: $${e^n - e^{frac1n + n}} = e^n(1- e^{frac1n}).$$ Then appling l'Hopitals rule to $$limlimits_{ntoinfty} e^n(1- e^{frac1n}) = limlimits_{ntoinfty} dfrac{(1- e^{frac1n})}{e^{-n}},$$ I have not found success. Is there another way to manipulate the expression to be able to apply l'Hopitals? I know the limit should approach -$infty$. To clarify, I can use l'Hopital.
calculus limits
calculus limits
asked Nov 19 at 21:47
t.perez
367
367
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
4
down vote
HINT
We have that
$${e^n - e^{frac1n + n}}=e^n left(1-e^{frac1n}right)=-frac{e^n}n frac{e^{frac1n}-1}{frac1n}$$
then use standard limits.
add a comment |
up vote
0
down vote
The answer is $-infty$.
The trick is to factor out an $e^{n}$ term, and force L'Hopital's Rule by writing the expression as a fraction. We have
$$lim_{ntoinfty} e^{n} - e^{frac{1}{n} + n} = lim_{ntoinfty} e^{n}left(1 - e^{1/n}right)$$
$$= lim_{ntoinfty} frac{e^{n}left(1 - e^{1/n}right)left(1 + e^{1/n}right)}{(1 + e^{1/n})} $$
$$= lim_{ntoinfty}frac{e^{n} left(1 - e^{2/n}right)}{1 + e^{1/n}} $$
$$= lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}}{1 + e^{1/n}}.$$
By L'Hopital's Rule, the above expression equals
$$lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n^{2}}right)}{-frac{1}{n^{2}} cdot e^{1/n}} \[1em] $$
$$= lim_{ntoinfty} frac{-n^{2} left( e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n}right)right)}{e^{1/n}}.$$
As $n rightarrow infty$, $e^{1/n}$ approaches $1$, and the numerator clearly approaches $-infty$.
Therefore, the answer is $-infty$.
This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
– t.perez
Nov 20 at 1:16
$$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
– Ekesh
Nov 20 at 5:40
My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
– t.perez
Nov 20 at 21:45
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
HINT
We have that
$${e^n - e^{frac1n + n}}=e^n left(1-e^{frac1n}right)=-frac{e^n}n frac{e^{frac1n}-1}{frac1n}$$
then use standard limits.
add a comment |
up vote
4
down vote
HINT
We have that
$${e^n - e^{frac1n + n}}=e^n left(1-e^{frac1n}right)=-frac{e^n}n frac{e^{frac1n}-1}{frac1n}$$
then use standard limits.
add a comment |
up vote
4
down vote
up vote
4
down vote
HINT
We have that
$${e^n - e^{frac1n + n}}=e^n left(1-e^{frac1n}right)=-frac{e^n}n frac{e^{frac1n}-1}{frac1n}$$
then use standard limits.
HINT
We have that
$${e^n - e^{frac1n + n}}=e^n left(1-e^{frac1n}right)=-frac{e^n}n frac{e^{frac1n}-1}{frac1n}$$
then use standard limits.
answered Nov 19 at 21:49
gimusi
90.2k74495
90.2k74495
add a comment |
add a comment |
up vote
0
down vote
The answer is $-infty$.
The trick is to factor out an $e^{n}$ term, and force L'Hopital's Rule by writing the expression as a fraction. We have
$$lim_{ntoinfty} e^{n} - e^{frac{1}{n} + n} = lim_{ntoinfty} e^{n}left(1 - e^{1/n}right)$$
$$= lim_{ntoinfty} frac{e^{n}left(1 - e^{1/n}right)left(1 + e^{1/n}right)}{(1 + e^{1/n})} $$
$$= lim_{ntoinfty}frac{e^{n} left(1 - e^{2/n}right)}{1 + e^{1/n}} $$
$$= lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}}{1 + e^{1/n}}.$$
By L'Hopital's Rule, the above expression equals
$$lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n^{2}}right)}{-frac{1}{n^{2}} cdot e^{1/n}} \[1em] $$
$$= lim_{ntoinfty} frac{-n^{2} left( e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n}right)right)}{e^{1/n}}.$$
As $n rightarrow infty$, $e^{1/n}$ approaches $1$, and the numerator clearly approaches $-infty$.
Therefore, the answer is $-infty$.
This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
– t.perez
Nov 20 at 1:16
$$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
– Ekesh
Nov 20 at 5:40
My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
– t.perez
Nov 20 at 21:45
add a comment |
up vote
0
down vote
The answer is $-infty$.
The trick is to factor out an $e^{n}$ term, and force L'Hopital's Rule by writing the expression as a fraction. We have
$$lim_{ntoinfty} e^{n} - e^{frac{1}{n} + n} = lim_{ntoinfty} e^{n}left(1 - e^{1/n}right)$$
$$= lim_{ntoinfty} frac{e^{n}left(1 - e^{1/n}right)left(1 + e^{1/n}right)}{(1 + e^{1/n})} $$
$$= lim_{ntoinfty}frac{e^{n} left(1 - e^{2/n}right)}{1 + e^{1/n}} $$
$$= lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}}{1 + e^{1/n}}.$$
By L'Hopital's Rule, the above expression equals
$$lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n^{2}}right)}{-frac{1}{n^{2}} cdot e^{1/n}} \[1em] $$
$$= lim_{ntoinfty} frac{-n^{2} left( e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n}right)right)}{e^{1/n}}.$$
As $n rightarrow infty$, $e^{1/n}$ approaches $1$, and the numerator clearly approaches $-infty$.
Therefore, the answer is $-infty$.
This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
– t.perez
Nov 20 at 1:16
$$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
– Ekesh
Nov 20 at 5:40
My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
– t.perez
Nov 20 at 21:45
add a comment |
up vote
0
down vote
up vote
0
down vote
The answer is $-infty$.
The trick is to factor out an $e^{n}$ term, and force L'Hopital's Rule by writing the expression as a fraction. We have
$$lim_{ntoinfty} e^{n} - e^{frac{1}{n} + n} = lim_{ntoinfty} e^{n}left(1 - e^{1/n}right)$$
$$= lim_{ntoinfty} frac{e^{n}left(1 - e^{1/n}right)left(1 + e^{1/n}right)}{(1 + e^{1/n})} $$
$$= lim_{ntoinfty}frac{e^{n} left(1 - e^{2/n}right)}{1 + e^{1/n}} $$
$$= lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}}{1 + e^{1/n}}.$$
By L'Hopital's Rule, the above expression equals
$$lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n^{2}}right)}{-frac{1}{n^{2}} cdot e^{1/n}} \[1em] $$
$$= lim_{ntoinfty} frac{-n^{2} left( e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n}right)right)}{e^{1/n}}.$$
As $n rightarrow infty$, $e^{1/n}$ approaches $1$, and the numerator clearly approaches $-infty$.
Therefore, the answer is $-infty$.
The answer is $-infty$.
The trick is to factor out an $e^{n}$ term, and force L'Hopital's Rule by writing the expression as a fraction. We have
$$lim_{ntoinfty} e^{n} - e^{frac{1}{n} + n} = lim_{ntoinfty} e^{n}left(1 - e^{1/n}right)$$
$$= lim_{ntoinfty} frac{e^{n}left(1 - e^{1/n}right)left(1 + e^{1/n}right)}{(1 + e^{1/n})} $$
$$= lim_{ntoinfty}frac{e^{n} left(1 - e^{2/n}right)}{1 + e^{1/n}} $$
$$= lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}}{1 + e^{1/n}}.$$
By L'Hopital's Rule, the above expression equals
$$lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n^{2}}right)}{-frac{1}{n^{2}} cdot e^{1/n}} \[1em] $$
$$= lim_{ntoinfty} frac{-n^{2} left( e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n}right)right)}{e^{1/n}}.$$
As $n rightarrow infty$, $e^{1/n}$ approaches $1$, and the numerator clearly approaches $-infty$.
Therefore, the answer is $-infty$.
answered Nov 19 at 21:57
Ekesh
4455
4455
This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
– t.perez
Nov 20 at 1:16
$$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
– Ekesh
Nov 20 at 5:40
My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
– t.perez
Nov 20 at 21:45
add a comment |
This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
– t.perez
Nov 20 at 1:16
$$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
– Ekesh
Nov 20 at 5:40
My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
– t.perez
Nov 20 at 21:45
This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
– t.perez
Nov 20 at 1:16
This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
– t.perez
Nov 20 at 1:16
$$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
– Ekesh
Nov 20 at 5:40
$$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
– Ekesh
Nov 20 at 5:40
My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
– t.perez
Nov 20 at 21:45
My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
– t.perez
Nov 20 at 21:45
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005568%2ffind-lim-limits-n-to-inftyen-e-frac1n-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown