Find $limlimits_{ntoinfty}{e^n - e^{frac1n + n}}$











up vote
1
down vote

favorite
1












So far I've tried: $${e^n - e^{frac1n + n}} = e^n(1- e^{frac1n}).$$ Then appling l'Hopitals rule to $$limlimits_{ntoinfty} e^n(1- e^{frac1n}) = limlimits_{ntoinfty} dfrac{(1- e^{frac1n})}{e^{-n}},$$ I have not found success. Is there another way to manipulate the expression to be able to apply l'Hopitals? I know the limit should approach -$infty$. To clarify, I can use l'Hopital.










share|cite|improve this question


























    up vote
    1
    down vote

    favorite
    1












    So far I've tried: $${e^n - e^{frac1n + n}} = e^n(1- e^{frac1n}).$$ Then appling l'Hopitals rule to $$limlimits_{ntoinfty} e^n(1- e^{frac1n}) = limlimits_{ntoinfty} dfrac{(1- e^{frac1n})}{e^{-n}},$$ I have not found success. Is there another way to manipulate the expression to be able to apply l'Hopitals? I know the limit should approach -$infty$. To clarify, I can use l'Hopital.










    share|cite|improve this question
























      up vote
      1
      down vote

      favorite
      1









      up vote
      1
      down vote

      favorite
      1






      1





      So far I've tried: $${e^n - e^{frac1n + n}} = e^n(1- e^{frac1n}).$$ Then appling l'Hopitals rule to $$limlimits_{ntoinfty} e^n(1- e^{frac1n}) = limlimits_{ntoinfty} dfrac{(1- e^{frac1n})}{e^{-n}},$$ I have not found success. Is there another way to manipulate the expression to be able to apply l'Hopitals? I know the limit should approach -$infty$. To clarify, I can use l'Hopital.










      share|cite|improve this question













      So far I've tried: $${e^n - e^{frac1n + n}} = e^n(1- e^{frac1n}).$$ Then appling l'Hopitals rule to $$limlimits_{ntoinfty} e^n(1- e^{frac1n}) = limlimits_{ntoinfty} dfrac{(1- e^{frac1n})}{e^{-n}},$$ I have not found success. Is there another way to manipulate the expression to be able to apply l'Hopitals? I know the limit should approach -$infty$. To clarify, I can use l'Hopital.







      calculus limits






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 19 at 21:47









      t.perez

      367




      367






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          4
          down vote













          HINT



          We have that



          $${e^n - e^{frac1n + n}}=e^n left(1-e^{frac1n}right)=-frac{e^n}n frac{e^{frac1n}-1}{frac1n}$$



          then use standard limits.






          share|cite|improve this answer




























            up vote
            0
            down vote













            The answer is $-infty$.



            The trick is to factor out an $e^{n}$ term, and force L'Hopital's Rule by writing the expression as a fraction. We have



            $$lim_{ntoinfty} e^{n} - e^{frac{1}{n} + n} = lim_{ntoinfty} e^{n}left(1 - e^{1/n}right)$$



            $$= lim_{ntoinfty} frac{e^{n}left(1 - e^{1/n}right)left(1 + e^{1/n}right)}{(1 + e^{1/n})} $$



            $$= lim_{ntoinfty}frac{e^{n} left(1 - e^{2/n}right)}{1 + e^{1/n}} $$



            $$= lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}}{1 + e^{1/n}}.$$



            By L'Hopital's Rule, the above expression equals



            $$lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n^{2}}right)}{-frac{1}{n^{2}} cdot e^{1/n}} \[1em] $$



            $$= lim_{ntoinfty} frac{-n^{2} left( e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n}right)right)}{e^{1/n}}.$$



            As $n rightarrow infty$, $e^{1/n}$ approaches $1$, and the numerator clearly approaches $-infty$.



            Therefore, the answer is $-infty$.






            share|cite|improve this answer





















            • This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
              – t.perez
              Nov 20 at 1:16












            • $$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
              – Ekesh
              Nov 20 at 5:40












            • My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
              – t.perez
              Nov 20 at 21:45











            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005568%2ffind-lim-limits-n-to-inftyen-e-frac1n-n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            4
            down vote













            HINT



            We have that



            $${e^n - e^{frac1n + n}}=e^n left(1-e^{frac1n}right)=-frac{e^n}n frac{e^{frac1n}-1}{frac1n}$$



            then use standard limits.






            share|cite|improve this answer

























              up vote
              4
              down vote













              HINT



              We have that



              $${e^n - e^{frac1n + n}}=e^n left(1-e^{frac1n}right)=-frac{e^n}n frac{e^{frac1n}-1}{frac1n}$$



              then use standard limits.






              share|cite|improve this answer























                up vote
                4
                down vote










                up vote
                4
                down vote









                HINT



                We have that



                $${e^n - e^{frac1n + n}}=e^n left(1-e^{frac1n}right)=-frac{e^n}n frac{e^{frac1n}-1}{frac1n}$$



                then use standard limits.






                share|cite|improve this answer












                HINT



                We have that



                $${e^n - e^{frac1n + n}}=e^n left(1-e^{frac1n}right)=-frac{e^n}n frac{e^{frac1n}-1}{frac1n}$$



                then use standard limits.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 19 at 21:49









                gimusi

                90.2k74495




                90.2k74495






















                    up vote
                    0
                    down vote













                    The answer is $-infty$.



                    The trick is to factor out an $e^{n}$ term, and force L'Hopital's Rule by writing the expression as a fraction. We have



                    $$lim_{ntoinfty} e^{n} - e^{frac{1}{n} + n} = lim_{ntoinfty} e^{n}left(1 - e^{1/n}right)$$



                    $$= lim_{ntoinfty} frac{e^{n}left(1 - e^{1/n}right)left(1 + e^{1/n}right)}{(1 + e^{1/n})} $$



                    $$= lim_{ntoinfty}frac{e^{n} left(1 - e^{2/n}right)}{1 + e^{1/n}} $$



                    $$= lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}}{1 + e^{1/n}}.$$



                    By L'Hopital's Rule, the above expression equals



                    $$lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n^{2}}right)}{-frac{1}{n^{2}} cdot e^{1/n}} \[1em] $$



                    $$= lim_{ntoinfty} frac{-n^{2} left( e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n}right)right)}{e^{1/n}}.$$



                    As $n rightarrow infty$, $e^{1/n}$ approaches $1$, and the numerator clearly approaches $-infty$.



                    Therefore, the answer is $-infty$.






                    share|cite|improve this answer





















                    • This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
                      – t.perez
                      Nov 20 at 1:16












                    • $$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
                      – Ekesh
                      Nov 20 at 5:40












                    • My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
                      – t.perez
                      Nov 20 at 21:45















                    up vote
                    0
                    down vote













                    The answer is $-infty$.



                    The trick is to factor out an $e^{n}$ term, and force L'Hopital's Rule by writing the expression as a fraction. We have



                    $$lim_{ntoinfty} e^{n} - e^{frac{1}{n} + n} = lim_{ntoinfty} e^{n}left(1 - e^{1/n}right)$$



                    $$= lim_{ntoinfty} frac{e^{n}left(1 - e^{1/n}right)left(1 + e^{1/n}right)}{(1 + e^{1/n})} $$



                    $$= lim_{ntoinfty}frac{e^{n} left(1 - e^{2/n}right)}{1 + e^{1/n}} $$



                    $$= lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}}{1 + e^{1/n}}.$$



                    By L'Hopital's Rule, the above expression equals



                    $$lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n^{2}}right)}{-frac{1}{n^{2}} cdot e^{1/n}} \[1em] $$



                    $$= lim_{ntoinfty} frac{-n^{2} left( e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n}right)right)}{e^{1/n}}.$$



                    As $n rightarrow infty$, $e^{1/n}$ approaches $1$, and the numerator clearly approaches $-infty$.



                    Therefore, the answer is $-infty$.






                    share|cite|improve this answer





















                    • This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
                      – t.perez
                      Nov 20 at 1:16












                    • $$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
                      – Ekesh
                      Nov 20 at 5:40












                    • My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
                      – t.perez
                      Nov 20 at 21:45













                    up vote
                    0
                    down vote










                    up vote
                    0
                    down vote









                    The answer is $-infty$.



                    The trick is to factor out an $e^{n}$ term, and force L'Hopital's Rule by writing the expression as a fraction. We have



                    $$lim_{ntoinfty} e^{n} - e^{frac{1}{n} + n} = lim_{ntoinfty} e^{n}left(1 - e^{1/n}right)$$



                    $$= lim_{ntoinfty} frac{e^{n}left(1 - e^{1/n}right)left(1 + e^{1/n}right)}{(1 + e^{1/n})} $$



                    $$= lim_{ntoinfty}frac{e^{n} left(1 - e^{2/n}right)}{1 + e^{1/n}} $$



                    $$= lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}}{1 + e^{1/n}}.$$



                    By L'Hopital's Rule, the above expression equals



                    $$lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n^{2}}right)}{-frac{1}{n^{2}} cdot e^{1/n}} \[1em] $$



                    $$= lim_{ntoinfty} frac{-n^{2} left( e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n}right)right)}{e^{1/n}}.$$



                    As $n rightarrow infty$, $e^{1/n}$ approaches $1$, and the numerator clearly approaches $-infty$.



                    Therefore, the answer is $-infty$.






                    share|cite|improve this answer












                    The answer is $-infty$.



                    The trick is to factor out an $e^{n}$ term, and force L'Hopital's Rule by writing the expression as a fraction. We have



                    $$lim_{ntoinfty} e^{n} - e^{frac{1}{n} + n} = lim_{ntoinfty} e^{n}left(1 - e^{1/n}right)$$



                    $$= lim_{ntoinfty} frac{e^{n}left(1 - e^{1/n}right)left(1 + e^{1/n}right)}{(1 + e^{1/n})} $$



                    $$= lim_{ntoinfty}frac{e^{n} left(1 - e^{2/n}right)}{1 + e^{1/n}} $$



                    $$= lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}}{1 + e^{1/n}}.$$



                    By L'Hopital's Rule, the above expression equals



                    $$lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n^{2}}right)}{-frac{1}{n^{2}} cdot e^{1/n}} \[1em] $$



                    $$= lim_{ntoinfty} frac{-n^{2} left( e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n}right)right)}{e^{1/n}}.$$



                    As $n rightarrow infty$, $e^{1/n}$ approaches $1$, and the numerator clearly approaches $-infty$.



                    Therefore, the answer is $-infty$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Nov 19 at 21:57









                    Ekesh

                    4455




                    4455












                    • This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
                      – t.perez
                      Nov 20 at 1:16












                    • $$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
                      – Ekesh
                      Nov 20 at 5:40












                    • My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
                      – t.perez
                      Nov 20 at 21:45


















                    • This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
                      – t.perez
                      Nov 20 at 1:16












                    • $$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
                      – Ekesh
                      Nov 20 at 5:40












                    • My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
                      – t.perez
                      Nov 20 at 21:45
















                    This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
                    – t.perez
                    Nov 20 at 1:16






                    This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
                    – t.perez
                    Nov 20 at 1:16














                    $$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
                    – Ekesh
                    Nov 20 at 5:40






                    $$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
                    – Ekesh
                    Nov 20 at 5:40














                    My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
                    – t.perez
                    Nov 20 at 21:45




                    My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
                    – t.perez
                    Nov 20 at 21:45


















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005568%2ffind-lim-limits-n-to-inftyen-e-frac1n-n%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How do I know what Microsoft account the skydrive app is syncing to?

                    When does type information flow backwards in C++?

                    Grease: Live!