Are all homogeneous functions of degree 1 of the form F(x)=k.x where k is any real number?
I was having a look at the derivation of the PDF of the Normal Distribution by Gauss (or supposedly Gauss' derivation) and at some point a homogeneuos function of degree one shows up and Gauss infers that a possible function that satisfies that functional equation is F(x) = k.x so then he can set this famous differential equation whose solution is the PDF of the Normal Distribution: (dF/dx)/(x-mean).F = -k , where k is some real number. I am curious to know if this is the only solution or a possible solution among many others, because if that were the case then there could be another PDF for the Normal. I'll leave you the explanation here so you can judge it by yourself. https://www.maa.org/sites/default/files/pdf/upload_library/22/Allendoerfer/stahl96.pdf Page 10 onwards.
probability functional-analysis statistics
add a comment |
I was having a look at the derivation of the PDF of the Normal Distribution by Gauss (or supposedly Gauss' derivation) and at some point a homogeneuos function of degree one shows up and Gauss infers that a possible function that satisfies that functional equation is F(x) = k.x so then he can set this famous differential equation whose solution is the PDF of the Normal Distribution: (dF/dx)/(x-mean).F = -k , where k is some real number. I am curious to know if this is the only solution or a possible solution among many others, because if that were the case then there could be another PDF for the Normal. I'll leave you the explanation here so you can judge it by yourself. https://www.maa.org/sites/default/files/pdf/upload_library/22/Allendoerfer/stahl96.pdf Page 10 onwards.
probability functional-analysis statistics
What does a "homogeneous function of degree one" means?
– Will M.
Nov 24 at 22:43
A homogeneous function of degree 1 means that a function satisfies this property F(x.k)=k.F(x), k is a constant. A homogeneous function of degree n is F(x.k)=k^n . F(x)
– Juan123
Nov 24 at 22:58
Did you noticed then that $F(x)=xF(1)$ and so, $F$ is the function $y = kx$ with $k = F(1)$? Either you completely lost it, or else, I am not getting it.
– Will M.
Nov 25 at 2:34
add a comment |
I was having a look at the derivation of the PDF of the Normal Distribution by Gauss (or supposedly Gauss' derivation) and at some point a homogeneuos function of degree one shows up and Gauss infers that a possible function that satisfies that functional equation is F(x) = k.x so then he can set this famous differential equation whose solution is the PDF of the Normal Distribution: (dF/dx)/(x-mean).F = -k , where k is some real number. I am curious to know if this is the only solution or a possible solution among many others, because if that were the case then there could be another PDF for the Normal. I'll leave you the explanation here so you can judge it by yourself. https://www.maa.org/sites/default/files/pdf/upload_library/22/Allendoerfer/stahl96.pdf Page 10 onwards.
probability functional-analysis statistics
I was having a look at the derivation of the PDF of the Normal Distribution by Gauss (or supposedly Gauss' derivation) and at some point a homogeneuos function of degree one shows up and Gauss infers that a possible function that satisfies that functional equation is F(x) = k.x so then he can set this famous differential equation whose solution is the PDF of the Normal Distribution: (dF/dx)/(x-mean).F = -k , where k is some real number. I am curious to know if this is the only solution or a possible solution among many others, because if that were the case then there could be another PDF for the Normal. I'll leave you the explanation here so you can judge it by yourself. https://www.maa.org/sites/default/files/pdf/upload_library/22/Allendoerfer/stahl96.pdf Page 10 onwards.
probability functional-analysis statistics
probability functional-analysis statistics
asked Nov 24 at 21:43
Juan123
815
815
What does a "homogeneous function of degree one" means?
– Will M.
Nov 24 at 22:43
A homogeneous function of degree 1 means that a function satisfies this property F(x.k)=k.F(x), k is a constant. A homogeneous function of degree n is F(x.k)=k^n . F(x)
– Juan123
Nov 24 at 22:58
Did you noticed then that $F(x)=xF(1)$ and so, $F$ is the function $y = kx$ with $k = F(1)$? Either you completely lost it, or else, I am not getting it.
– Will M.
Nov 25 at 2:34
add a comment |
What does a "homogeneous function of degree one" means?
– Will M.
Nov 24 at 22:43
A homogeneous function of degree 1 means that a function satisfies this property F(x.k)=k.F(x), k is a constant. A homogeneous function of degree n is F(x.k)=k^n . F(x)
– Juan123
Nov 24 at 22:58
Did you noticed then that $F(x)=xF(1)$ and so, $F$ is the function $y = kx$ with $k = F(1)$? Either you completely lost it, or else, I am not getting it.
– Will M.
Nov 25 at 2:34
What does a "homogeneous function of degree one" means?
– Will M.
Nov 24 at 22:43
What does a "homogeneous function of degree one" means?
– Will M.
Nov 24 at 22:43
A homogeneous function of degree 1 means that a function satisfies this property F(x.k)=k.F(x), k is a constant. A homogeneous function of degree n is F(x.k)=k^n . F(x)
– Juan123
Nov 24 at 22:58
A homogeneous function of degree 1 means that a function satisfies this property F(x.k)=k.F(x), k is a constant. A homogeneous function of degree n is F(x.k)=k^n . F(x)
– Juan123
Nov 24 at 22:58
Did you noticed then that $F(x)=xF(1)$ and so, $F$ is the function $y = kx$ with $k = F(1)$? Either you completely lost it, or else, I am not getting it.
– Will M.
Nov 25 at 2:34
Did you noticed then that $F(x)=xF(1)$ and so, $F$ is the function $y = kx$ with $k = F(1)$? Either you completely lost it, or else, I am not getting it.
– Will M.
Nov 25 at 2:34
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012125%2fare-all-homogeneous-functions-of-degree-1-of-the-form-fx-k-x-where-k-is-any-re%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012125%2fare-all-homogeneous-functions-of-degree-1-of-the-form-fx-k-x-where-k-is-any-re%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
What does a "homogeneous function of degree one" means?
– Will M.
Nov 24 at 22:43
A homogeneous function of degree 1 means that a function satisfies this property F(x.k)=k.F(x), k is a constant. A homogeneous function of degree n is F(x.k)=k^n . F(x)
– Juan123
Nov 24 at 22:58
Did you noticed then that $F(x)=xF(1)$ and so, $F$ is the function $y = kx$ with $k = F(1)$? Either you completely lost it, or else, I am not getting it.
– Will M.
Nov 25 at 2:34