An inequality with constraints.
up vote
0
down vote
favorite
I came across a result in a control theory book (without proof), which states that:
Given two variables $x,z in mathbb{R}$ and four parameters $c_{1}, c_{2}, k_{1}, k_{2}$ with $c_{1}, c_{2} > 0$. A function $f(x,z)$ is defined as
begin{align}
f(x,z) &= -c_{1}x^{2} - x^{4} + z[x-k_{1}z - k_{2}x^{2}z + (c_{1}-sin x)(-c_{1}x - x^{3} + z)]
end{align}
The book reads that if we choose $k_{1} > c_{2} + c_{1} + 1 + dfrac{(c_{1}^{2}+c_{1}+1)^{2}}{2c_{1}}$ and $k_{2} ge dfrac{(c_{1}+1)^2}{4}$, then $f(x,z) le -dfrac{1}{2}c_{1}x^{2} - c_{2}z^{2}$.
I am trying to prove such result, but no luck. Now, I am trying to expand every term of $f(x,z)$ to apply the AM-GM inequality, but it does not go anywhere. Do you have any suggestion/hint on this problem? Thanks a lot!
analysis inequality control-theory
add a comment |
up vote
0
down vote
favorite
I came across a result in a control theory book (without proof), which states that:
Given two variables $x,z in mathbb{R}$ and four parameters $c_{1}, c_{2}, k_{1}, k_{2}$ with $c_{1}, c_{2} > 0$. A function $f(x,z)$ is defined as
begin{align}
f(x,z) &= -c_{1}x^{2} - x^{4} + z[x-k_{1}z - k_{2}x^{2}z + (c_{1}-sin x)(-c_{1}x - x^{3} + z)]
end{align}
The book reads that if we choose $k_{1} > c_{2} + c_{1} + 1 + dfrac{(c_{1}^{2}+c_{1}+1)^{2}}{2c_{1}}$ and $k_{2} ge dfrac{(c_{1}+1)^2}{4}$, then $f(x,z) le -dfrac{1}{2}c_{1}x^{2} - c_{2}z^{2}$.
I am trying to prove such result, but no luck. Now, I am trying to expand every term of $f(x,z)$ to apply the AM-GM inequality, but it does not go anywhere. Do you have any suggestion/hint on this problem? Thanks a lot!
analysis inequality control-theory
1
I noticed that in the function definition, no $c_2$ arises, so it seems strange that the result should depend on $c_2$. Could you please check?
– Andreas
12 hours ago
Thanks @Andreas. I have checked it and it was correct. Although $c_{2}$ is not explicitly present in $f(x,z)$ but it is included in $k_{1}$, which is inside $f(x,z)$. Therefore, the result should depend on $c_{2}$.
– lyhuehue01
12 hours ago
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I came across a result in a control theory book (without proof), which states that:
Given two variables $x,z in mathbb{R}$ and four parameters $c_{1}, c_{2}, k_{1}, k_{2}$ with $c_{1}, c_{2} > 0$. A function $f(x,z)$ is defined as
begin{align}
f(x,z) &= -c_{1}x^{2} - x^{4} + z[x-k_{1}z - k_{2}x^{2}z + (c_{1}-sin x)(-c_{1}x - x^{3} + z)]
end{align}
The book reads that if we choose $k_{1} > c_{2} + c_{1} + 1 + dfrac{(c_{1}^{2}+c_{1}+1)^{2}}{2c_{1}}$ and $k_{2} ge dfrac{(c_{1}+1)^2}{4}$, then $f(x,z) le -dfrac{1}{2}c_{1}x^{2} - c_{2}z^{2}$.
I am trying to prove such result, but no luck. Now, I am trying to expand every term of $f(x,z)$ to apply the AM-GM inequality, but it does not go anywhere. Do you have any suggestion/hint on this problem? Thanks a lot!
analysis inequality control-theory
I came across a result in a control theory book (without proof), which states that:
Given two variables $x,z in mathbb{R}$ and four parameters $c_{1}, c_{2}, k_{1}, k_{2}$ with $c_{1}, c_{2} > 0$. A function $f(x,z)$ is defined as
begin{align}
f(x,z) &= -c_{1}x^{2} - x^{4} + z[x-k_{1}z - k_{2}x^{2}z + (c_{1}-sin x)(-c_{1}x - x^{3} + z)]
end{align}
The book reads that if we choose $k_{1} > c_{2} + c_{1} + 1 + dfrac{(c_{1}^{2}+c_{1}+1)^{2}}{2c_{1}}$ and $k_{2} ge dfrac{(c_{1}+1)^2}{4}$, then $f(x,z) le -dfrac{1}{2}c_{1}x^{2} - c_{2}z^{2}$.
I am trying to prove such result, but no luck. Now, I am trying to expand every term of $f(x,z)$ to apply the AM-GM inequality, but it does not go anywhere. Do you have any suggestion/hint on this problem? Thanks a lot!
analysis inequality control-theory
analysis inequality control-theory
edited 12 hours ago
user10354138
6,124523
6,124523
asked 13 hours ago
lyhuehue01
133
133
1
I noticed that in the function definition, no $c_2$ arises, so it seems strange that the result should depend on $c_2$. Could you please check?
– Andreas
12 hours ago
Thanks @Andreas. I have checked it and it was correct. Although $c_{2}$ is not explicitly present in $f(x,z)$ but it is included in $k_{1}$, which is inside $f(x,z)$. Therefore, the result should depend on $c_{2}$.
– lyhuehue01
12 hours ago
add a comment |
1
I noticed that in the function definition, no $c_2$ arises, so it seems strange that the result should depend on $c_2$. Could you please check?
– Andreas
12 hours ago
Thanks @Andreas. I have checked it and it was correct. Although $c_{2}$ is not explicitly present in $f(x,z)$ but it is included in $k_{1}$, which is inside $f(x,z)$. Therefore, the result should depend on $c_{2}$.
– lyhuehue01
12 hours ago
1
1
I noticed that in the function definition, no $c_2$ arises, so it seems strange that the result should depend on $c_2$. Could you please check?
– Andreas
12 hours ago
I noticed that in the function definition, no $c_2$ arises, so it seems strange that the result should depend on $c_2$. Could you please check?
– Andreas
12 hours ago
Thanks @Andreas. I have checked it and it was correct. Although $c_{2}$ is not explicitly present in $f(x,z)$ but it is included in $k_{1}$, which is inside $f(x,z)$. Therefore, the result should depend on $c_{2}$.
– lyhuehue01
12 hours ago
Thanks @Andreas. I have checked it and it was correct. Although $c_{2}$ is not explicitly present in $f(x,z)$ but it is included in $k_{1}$, which is inside $f(x,z)$. Therefore, the result should depend on $c_{2}$.
– lyhuehue01
12 hours ago
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996473%2fan-inequality-with-constraints%23new-answer', 'question_page');
}
);
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
I noticed that in the function definition, no $c_2$ arises, so it seems strange that the result should depend on $c_2$. Could you please check?
– Andreas
12 hours ago
Thanks @Andreas. I have checked it and it was correct. Although $c_{2}$ is not explicitly present in $f(x,z)$ but it is included in $k_{1}$, which is inside $f(x,z)$. Therefore, the result should depend on $c_{2}$.
– lyhuehue01
12 hours ago