a) Find all the values of $alpha$ such that $f'(0)$ exists. b) Find all the values of $alpha$ such that $f$...
up vote
0
down vote
favorite
For any positive real numbers $ alpha $ and $beta$, define
$f(x) = begin{cases} x^{alpha} sinfrac{1}{x^beta} && text{if $x in (0,1]$,}\
0 && text{if $x = 0$}end {cases}$
a) For a given $beta > 0$ , find all the values of $alpha$ such that $f'(0)$ exists.
b) For given $beta >0,$ find all the values of $ alpha$ such that $f$ is of bounded variation on $[0,1]$
My ANSWER: For $ a) $ $alpha ge beta$ then $f$ is bounded variation . now $ f'(0) $will exists if $alpha ge beta ge 0$
For $b)$ same condition as for $(a)$
Edit answer :$f$ has derivative $$displaystyle f^prime(x) = begin{cases} alpha x^{alpha-1} sinleft(dfrac{1}{x^beta}right) - dfrac{x^alpha}{x^{beta +1}} cosleft(dfrac{1}{x^beta}right) &text{on }(0,1], \\ 0 & text{if }x = 0.
end{cases}$$ Hence $$vert f^prime(x) vert le alpha x^{alpha-1} + x^{alpha - beta -1}$$ The integrals $int_0^1 x^{alpha-1}dx$ and $int_0^1 x^{alpha - beta -1}dx$ both converge for $1 < alpha < 1 +beta $. Hence $$V_0^1(f) le int_0^1 vert f^prime(x) vert dx$$ and $f$ is of bounded variation on $[0,1]$ as the RHS of the inequality is finite.
Is my answer correct ??? or incorrect ?? Please rectify it.
real-analysis
add a comment |
up vote
0
down vote
favorite
For any positive real numbers $ alpha $ and $beta$, define
$f(x) = begin{cases} x^{alpha} sinfrac{1}{x^beta} && text{if $x in (0,1]$,}\
0 && text{if $x = 0$}end {cases}$
a) For a given $beta > 0$ , find all the values of $alpha$ such that $f'(0)$ exists.
b) For given $beta >0,$ find all the values of $ alpha$ such that $f$ is of bounded variation on $[0,1]$
My ANSWER: For $ a) $ $alpha ge beta$ then $f$ is bounded variation . now $ f'(0) $will exists if $alpha ge beta ge 0$
For $b)$ same condition as for $(a)$
Edit answer :$f$ has derivative $$displaystyle f^prime(x) = begin{cases} alpha x^{alpha-1} sinleft(dfrac{1}{x^beta}right) - dfrac{x^alpha}{x^{beta +1}} cosleft(dfrac{1}{x^beta}right) &text{on }(0,1], \\ 0 & text{if }x = 0.
end{cases}$$ Hence $$vert f^prime(x) vert le alpha x^{alpha-1} + x^{alpha - beta -1}$$ The integrals $int_0^1 x^{alpha-1}dx$ and $int_0^1 x^{alpha - beta -1}dx$ both converge for $1 < alpha < 1 +beta $. Hence $$V_0^1(f) le int_0^1 vert f^prime(x) vert dx$$ and $f$ is of bounded variation on $[0,1]$ as the RHS of the inequality is finite.
Is my answer correct ??? or incorrect ?? Please rectify it.
real-analysis
1
Some hints: for a): apply the definition of derivative at zero; for b): for which $gamma in mathbb{R}$ is the integral $$intlimits_{0}^{1} x^{gamma}, dx$$ convergent? Also, are you sure that your formula for the derivative on $(0, 1]$ correct?
– user539887
Apr 24 at 21:19
for a) $f$ derivative is $$f^prime(0) = begin{cases} alpha 0^{alpha-1} sinleft(frac{1}{0^beta}right) - frac{0^alpha}{0^{beta +1}} cosleft(frac{1}{0^beta}right) &text{on }(0,1], \ 0 & text{if }x = 0. end{cases}$$
– lomber
Apr 24 at 23:30
@user539887 for b )$gamma < 1$
– lomber
Apr 24 at 23:31
but what is $gamma$ here?
– lomber
Apr 24 at 23:40
I repeat: for a), apply the definition of derivative (not use the formula that have no application here; by the way, that formula is still wrong). $gamma$ is any real number, for which you can substitute $alpha-1$ and $alpha-beta-1$.
– user539887
Apr 25 at 6:23
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
For any positive real numbers $ alpha $ and $beta$, define
$f(x) = begin{cases} x^{alpha} sinfrac{1}{x^beta} && text{if $x in (0,1]$,}\
0 && text{if $x = 0$}end {cases}$
a) For a given $beta > 0$ , find all the values of $alpha$ such that $f'(0)$ exists.
b) For given $beta >0,$ find all the values of $ alpha$ such that $f$ is of bounded variation on $[0,1]$
My ANSWER: For $ a) $ $alpha ge beta$ then $f$ is bounded variation . now $ f'(0) $will exists if $alpha ge beta ge 0$
For $b)$ same condition as for $(a)$
Edit answer :$f$ has derivative $$displaystyle f^prime(x) = begin{cases} alpha x^{alpha-1} sinleft(dfrac{1}{x^beta}right) - dfrac{x^alpha}{x^{beta +1}} cosleft(dfrac{1}{x^beta}right) &text{on }(0,1], \\ 0 & text{if }x = 0.
end{cases}$$ Hence $$vert f^prime(x) vert le alpha x^{alpha-1} + x^{alpha - beta -1}$$ The integrals $int_0^1 x^{alpha-1}dx$ and $int_0^1 x^{alpha - beta -1}dx$ both converge for $1 < alpha < 1 +beta $. Hence $$V_0^1(f) le int_0^1 vert f^prime(x) vert dx$$ and $f$ is of bounded variation on $[0,1]$ as the RHS of the inequality is finite.
Is my answer correct ??? or incorrect ?? Please rectify it.
real-analysis
For any positive real numbers $ alpha $ and $beta$, define
$f(x) = begin{cases} x^{alpha} sinfrac{1}{x^beta} && text{if $x in (0,1]$,}\
0 && text{if $x = 0$}end {cases}$
a) For a given $beta > 0$ , find all the values of $alpha$ such that $f'(0)$ exists.
b) For given $beta >0,$ find all the values of $ alpha$ such that $f$ is of bounded variation on $[0,1]$
My ANSWER: For $ a) $ $alpha ge beta$ then $f$ is bounded variation . now $ f'(0) $will exists if $alpha ge beta ge 0$
For $b)$ same condition as for $(a)$
Edit answer :$f$ has derivative $$displaystyle f^prime(x) = begin{cases} alpha x^{alpha-1} sinleft(dfrac{1}{x^beta}right) - dfrac{x^alpha}{x^{beta +1}} cosleft(dfrac{1}{x^beta}right) &text{on }(0,1], \\ 0 & text{if }x = 0.
end{cases}$$ Hence $$vert f^prime(x) vert le alpha x^{alpha-1} + x^{alpha - beta -1}$$ The integrals $int_0^1 x^{alpha-1}dx$ and $int_0^1 x^{alpha - beta -1}dx$ both converge for $1 < alpha < 1 +beta $. Hence $$V_0^1(f) le int_0^1 vert f^prime(x) vert dx$$ and $f$ is of bounded variation on $[0,1]$ as the RHS of the inequality is finite.
Is my answer correct ??? or incorrect ?? Please rectify it.
real-analysis
real-analysis
edited 5 hours ago
Yadati Kiran
266
266
asked Apr 24 at 20:03
lomber
753219
753219
1
Some hints: for a): apply the definition of derivative at zero; for b): for which $gamma in mathbb{R}$ is the integral $$intlimits_{0}^{1} x^{gamma}, dx$$ convergent? Also, are you sure that your formula for the derivative on $(0, 1]$ correct?
– user539887
Apr 24 at 21:19
for a) $f$ derivative is $$f^prime(0) = begin{cases} alpha 0^{alpha-1} sinleft(frac{1}{0^beta}right) - frac{0^alpha}{0^{beta +1}} cosleft(frac{1}{0^beta}right) &text{on }(0,1], \ 0 & text{if }x = 0. end{cases}$$
– lomber
Apr 24 at 23:30
@user539887 for b )$gamma < 1$
– lomber
Apr 24 at 23:31
but what is $gamma$ here?
– lomber
Apr 24 at 23:40
I repeat: for a), apply the definition of derivative (not use the formula that have no application here; by the way, that formula is still wrong). $gamma$ is any real number, for which you can substitute $alpha-1$ and $alpha-beta-1$.
– user539887
Apr 25 at 6:23
add a comment |
1
Some hints: for a): apply the definition of derivative at zero; for b): for which $gamma in mathbb{R}$ is the integral $$intlimits_{0}^{1} x^{gamma}, dx$$ convergent? Also, are you sure that your formula for the derivative on $(0, 1]$ correct?
– user539887
Apr 24 at 21:19
for a) $f$ derivative is $$f^prime(0) = begin{cases} alpha 0^{alpha-1} sinleft(frac{1}{0^beta}right) - frac{0^alpha}{0^{beta +1}} cosleft(frac{1}{0^beta}right) &text{on }(0,1], \ 0 & text{if }x = 0. end{cases}$$
– lomber
Apr 24 at 23:30
@user539887 for b )$gamma < 1$
– lomber
Apr 24 at 23:31
but what is $gamma$ here?
– lomber
Apr 24 at 23:40
I repeat: for a), apply the definition of derivative (not use the formula that have no application here; by the way, that formula is still wrong). $gamma$ is any real number, for which you can substitute $alpha-1$ and $alpha-beta-1$.
– user539887
Apr 25 at 6:23
1
1
Some hints: for a): apply the definition of derivative at zero; for b): for which $gamma in mathbb{R}$ is the integral $$intlimits_{0}^{1} x^{gamma}, dx$$ convergent? Also, are you sure that your formula for the derivative on $(0, 1]$ correct?
– user539887
Apr 24 at 21:19
Some hints: for a): apply the definition of derivative at zero; for b): for which $gamma in mathbb{R}$ is the integral $$intlimits_{0}^{1} x^{gamma}, dx$$ convergent? Also, are you sure that your formula for the derivative on $(0, 1]$ correct?
– user539887
Apr 24 at 21:19
for a) $f$ derivative is $$f^prime(0) = begin{cases} alpha 0^{alpha-1} sinleft(frac{1}{0^beta}right) - frac{0^alpha}{0^{beta +1}} cosleft(frac{1}{0^beta}right) &text{on }(0,1], \ 0 & text{if }x = 0. end{cases}$$
– lomber
Apr 24 at 23:30
for a) $f$ derivative is $$f^prime(0) = begin{cases} alpha 0^{alpha-1} sinleft(frac{1}{0^beta}right) - frac{0^alpha}{0^{beta +1}} cosleft(frac{1}{0^beta}right) &text{on }(0,1], \ 0 & text{if }x = 0. end{cases}$$
– lomber
Apr 24 at 23:30
@user539887 for b )$gamma < 1$
– lomber
Apr 24 at 23:31
@user539887 for b )$gamma < 1$
– lomber
Apr 24 at 23:31
but what is $gamma$ here?
– lomber
Apr 24 at 23:40
but what is $gamma$ here?
– lomber
Apr 24 at 23:40
I repeat: for a), apply the definition of derivative (not use the formula that have no application here; by the way, that formula is still wrong). $gamma$ is any real number, for which you can substitute $alpha-1$ and $alpha-beta-1$.
– user539887
Apr 25 at 6:23
I repeat: for a), apply the definition of derivative (not use the formula that have no application here; by the way, that formula is still wrong). $gamma$ is any real number, for which you can substitute $alpha-1$ and $alpha-beta-1$.
– user539887
Apr 25 at 6:23
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
For the first part $f'(0)$ exists if $displaystylelim_{hrightarrow 0^+}dfrac{f(0+h)-f(0)}{h}$ exists. Without loss of generality fix $beta>0$, we have the limit $$displaystylelim_{hrightarrow 0^+}dfrac{(0+h)^{alpha}sinBig(dfrac{1}{(0+h)^{beta}}Big)-0}{h}=lim_{hrightarrow 0^+}h^{alpha-1}sinBig(dfrac{1}{h^{beta}}Big) .$$ Using squeeze theorem we see the limit exists if $alphageq beta+1$.
$rule{17cm}{1pt}$
For the second part we calcualte $f'(x)$.
$$ f'(x)=begin{align}begin{cases}alpha x^{alpha-1}sinBig(dfrac{1}{x^{beta}}Big)-dfrac{beta x^{alpha}}{x^{beta+1}}cosBig(dfrac{1}{x^{beta}}Big),
&xneq0\0, &x=0end{cases}end{align}$$ If total variation is finite we say $f$ is of bounded variation. Also if $f$ is differentiable and its derivative is Riemann-integrable, its total variation is given by
$${displaystyle V_{a}^{b}(f)=int _{a}^{b}|f'(x)|,mathrm {d} x.} .$$
$$V_0^1(f)=int_0^1|f'(x)|dxleqalphaint_0^1x^{alpha-1}dx+betaint_0^1x^{alpha-beta-1}dx=1+dfrac{alpha}{alpha-beta} $$
(The above integrals Riemann integrable only if $alpha-1>-1$ and $alpha-beta-1>-1$). Thus the total variation $V_0^1(f)$ is finite if $alpha>0$ and $alpha>beta$.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
For the first part $f'(0)$ exists if $displaystylelim_{hrightarrow 0^+}dfrac{f(0+h)-f(0)}{h}$ exists. Without loss of generality fix $beta>0$, we have the limit $$displaystylelim_{hrightarrow 0^+}dfrac{(0+h)^{alpha}sinBig(dfrac{1}{(0+h)^{beta}}Big)-0}{h}=lim_{hrightarrow 0^+}h^{alpha-1}sinBig(dfrac{1}{h^{beta}}Big) .$$ Using squeeze theorem we see the limit exists if $alphageq beta+1$.
$rule{17cm}{1pt}$
For the second part we calcualte $f'(x)$.
$$ f'(x)=begin{align}begin{cases}alpha x^{alpha-1}sinBig(dfrac{1}{x^{beta}}Big)-dfrac{beta x^{alpha}}{x^{beta+1}}cosBig(dfrac{1}{x^{beta}}Big),
&xneq0\0, &x=0end{cases}end{align}$$ If total variation is finite we say $f$ is of bounded variation. Also if $f$ is differentiable and its derivative is Riemann-integrable, its total variation is given by
$${displaystyle V_{a}^{b}(f)=int _{a}^{b}|f'(x)|,mathrm {d} x.} .$$
$$V_0^1(f)=int_0^1|f'(x)|dxleqalphaint_0^1x^{alpha-1}dx+betaint_0^1x^{alpha-beta-1}dx=1+dfrac{alpha}{alpha-beta} $$
(The above integrals Riemann integrable only if $alpha-1>-1$ and $alpha-beta-1>-1$). Thus the total variation $V_0^1(f)$ is finite if $alpha>0$ and $alpha>beta$.
add a comment |
up vote
0
down vote
For the first part $f'(0)$ exists if $displaystylelim_{hrightarrow 0^+}dfrac{f(0+h)-f(0)}{h}$ exists. Without loss of generality fix $beta>0$, we have the limit $$displaystylelim_{hrightarrow 0^+}dfrac{(0+h)^{alpha}sinBig(dfrac{1}{(0+h)^{beta}}Big)-0}{h}=lim_{hrightarrow 0^+}h^{alpha-1}sinBig(dfrac{1}{h^{beta}}Big) .$$ Using squeeze theorem we see the limit exists if $alphageq beta+1$.
$rule{17cm}{1pt}$
For the second part we calcualte $f'(x)$.
$$ f'(x)=begin{align}begin{cases}alpha x^{alpha-1}sinBig(dfrac{1}{x^{beta}}Big)-dfrac{beta x^{alpha}}{x^{beta+1}}cosBig(dfrac{1}{x^{beta}}Big),
&xneq0\0, &x=0end{cases}end{align}$$ If total variation is finite we say $f$ is of bounded variation. Also if $f$ is differentiable and its derivative is Riemann-integrable, its total variation is given by
$${displaystyle V_{a}^{b}(f)=int _{a}^{b}|f'(x)|,mathrm {d} x.} .$$
$$V_0^1(f)=int_0^1|f'(x)|dxleqalphaint_0^1x^{alpha-1}dx+betaint_0^1x^{alpha-beta-1}dx=1+dfrac{alpha}{alpha-beta} $$
(The above integrals Riemann integrable only if $alpha-1>-1$ and $alpha-beta-1>-1$). Thus the total variation $V_0^1(f)$ is finite if $alpha>0$ and $alpha>beta$.
add a comment |
up vote
0
down vote
up vote
0
down vote
For the first part $f'(0)$ exists if $displaystylelim_{hrightarrow 0^+}dfrac{f(0+h)-f(0)}{h}$ exists. Without loss of generality fix $beta>0$, we have the limit $$displaystylelim_{hrightarrow 0^+}dfrac{(0+h)^{alpha}sinBig(dfrac{1}{(0+h)^{beta}}Big)-0}{h}=lim_{hrightarrow 0^+}h^{alpha-1}sinBig(dfrac{1}{h^{beta}}Big) .$$ Using squeeze theorem we see the limit exists if $alphageq beta+1$.
$rule{17cm}{1pt}$
For the second part we calcualte $f'(x)$.
$$ f'(x)=begin{align}begin{cases}alpha x^{alpha-1}sinBig(dfrac{1}{x^{beta}}Big)-dfrac{beta x^{alpha}}{x^{beta+1}}cosBig(dfrac{1}{x^{beta}}Big),
&xneq0\0, &x=0end{cases}end{align}$$ If total variation is finite we say $f$ is of bounded variation. Also if $f$ is differentiable and its derivative is Riemann-integrable, its total variation is given by
$${displaystyle V_{a}^{b}(f)=int _{a}^{b}|f'(x)|,mathrm {d} x.} .$$
$$V_0^1(f)=int_0^1|f'(x)|dxleqalphaint_0^1x^{alpha-1}dx+betaint_0^1x^{alpha-beta-1}dx=1+dfrac{alpha}{alpha-beta} $$
(The above integrals Riemann integrable only if $alpha-1>-1$ and $alpha-beta-1>-1$). Thus the total variation $V_0^1(f)$ is finite if $alpha>0$ and $alpha>beta$.
For the first part $f'(0)$ exists if $displaystylelim_{hrightarrow 0^+}dfrac{f(0+h)-f(0)}{h}$ exists. Without loss of generality fix $beta>0$, we have the limit $$displaystylelim_{hrightarrow 0^+}dfrac{(0+h)^{alpha}sinBig(dfrac{1}{(0+h)^{beta}}Big)-0}{h}=lim_{hrightarrow 0^+}h^{alpha-1}sinBig(dfrac{1}{h^{beta}}Big) .$$ Using squeeze theorem we see the limit exists if $alphageq beta+1$.
$rule{17cm}{1pt}$
For the second part we calcualte $f'(x)$.
$$ f'(x)=begin{align}begin{cases}alpha x^{alpha-1}sinBig(dfrac{1}{x^{beta}}Big)-dfrac{beta x^{alpha}}{x^{beta+1}}cosBig(dfrac{1}{x^{beta}}Big),
&xneq0\0, &x=0end{cases}end{align}$$ If total variation is finite we say $f$ is of bounded variation. Also if $f$ is differentiable and its derivative is Riemann-integrable, its total variation is given by
$${displaystyle V_{a}^{b}(f)=int _{a}^{b}|f'(x)|,mathrm {d} x.} .$$
$$V_0^1(f)=int_0^1|f'(x)|dxleqalphaint_0^1x^{alpha-1}dx+betaint_0^1x^{alpha-beta-1}dx=1+dfrac{alpha}{alpha-beta} $$
(The above integrals Riemann integrable only if $alpha-1>-1$ and $alpha-beta-1>-1$). Thus the total variation $V_0^1(f)$ is finite if $alpha>0$ and $alpha>beta$.
edited 4 hours ago
answered 5 hours ago
Yadati Kiran
266
266
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2752165%2fa-find-all-the-values-of-alpha-such-that-f0-exists-b-find-all-the-val%23new-answer', 'question_page');
}
);
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
Some hints: for a): apply the definition of derivative at zero; for b): for which $gamma in mathbb{R}$ is the integral $$intlimits_{0}^{1} x^{gamma}, dx$$ convergent? Also, are you sure that your formula for the derivative on $(0, 1]$ correct?
– user539887
Apr 24 at 21:19
for a) $f$ derivative is $$f^prime(0) = begin{cases} alpha 0^{alpha-1} sinleft(frac{1}{0^beta}right) - frac{0^alpha}{0^{beta +1}} cosleft(frac{1}{0^beta}right) &text{on }(0,1], \ 0 & text{if }x = 0. end{cases}$$
– lomber
Apr 24 at 23:30
@user539887 for b )$gamma < 1$
– lomber
Apr 24 at 23:31
but what is $gamma$ here?
– lomber
Apr 24 at 23:40
I repeat: for a), apply the definition of derivative (not use the formula that have no application here; by the way, that formula is still wrong). $gamma$ is any real number, for which you can substitute $alpha-1$ and $alpha-beta-1$.
– user539887
Apr 25 at 6:23