a) Find all the values of $alpha$ such that $f'(0)$ exists. b) Find all the values of $alpha$ such that $f$...











up vote
0
down vote

favorite












For any positive real numbers $ alpha $ and $beta$, define



$f(x) = begin{cases} x^{alpha} sinfrac{1}{x^beta} && text{if $x in (0,1]$,}\
0 && text{if $x = 0$}end {cases}$



a) For a given $beta > 0$ , find all the values of $alpha$ such that $f'(0)$ exists.



b) For given $beta >0,$ find all the values of $ alpha$ such that $f$ is of bounded variation on $[0,1]$



My ANSWER: For $ a) $ $alpha ge beta$ then $f$ is bounded variation . now $ f'(0) $will exists if $alpha ge beta ge 0$



For $b)$ same condition as for $(a)$



Edit answer :$f$ has derivative $$displaystyle f^prime(x) = begin{cases} alpha x^{alpha-1} sinleft(dfrac{1}{x^beta}right) - dfrac{x^alpha}{x^{beta +1}} cosleft(dfrac{1}{x^beta}right) &text{on }(0,1], \\ 0 & text{if }x = 0.
end{cases}$$
Hence $$vert f^prime(x) vert le alpha x^{alpha-1} + x^{alpha - beta -1}$$ The integrals $int_0^1 x^{alpha-1}dx$ and $int_0^1 x^{alpha - beta -1}dx$ both converge for $1 < alpha < 1 +beta $. Hence $$V_0^1(f) le int_0^1 vert f^prime(x) vert dx$$ and $f$ is of bounded variation on $[0,1]$ as the RHS of the inequality is finite.



Is my answer correct ??? or incorrect ?? Please rectify it.










share|cite|improve this question




















  • 1




    Some hints: for a): apply the definition of derivative at zero; for b): for which $gamma in mathbb{R}$ is the integral $$intlimits_{0}^{1} x^{gamma}, dx$$ convergent? Also, are you sure that your formula for the derivative on $(0, 1]$ correct?
    – user539887
    Apr 24 at 21:19












  • for a) $f$ derivative is $$f^prime(0) = begin{cases} alpha 0^{alpha-1} sinleft(frac{1}{0^beta}right) - frac{0^alpha}{0^{beta +1}} cosleft(frac{1}{0^beta}right) &text{on }(0,1], \ 0 & text{if }x = 0. end{cases}$$
    – lomber
    Apr 24 at 23:30










  • @user539887 for b )$gamma < 1$
    – lomber
    Apr 24 at 23:31










  • but what is $gamma$ here?
    – lomber
    Apr 24 at 23:40










  • I repeat: for a), apply the definition of derivative (not use the formula that have no application here; by the way, that formula is still wrong). $gamma$ is any real number, for which you can substitute $alpha-1$ and $alpha-beta-1$.
    – user539887
    Apr 25 at 6:23

















up vote
0
down vote

favorite












For any positive real numbers $ alpha $ and $beta$, define



$f(x) = begin{cases} x^{alpha} sinfrac{1}{x^beta} && text{if $x in (0,1]$,}\
0 && text{if $x = 0$}end {cases}$



a) For a given $beta > 0$ , find all the values of $alpha$ such that $f'(0)$ exists.



b) For given $beta >0,$ find all the values of $ alpha$ such that $f$ is of bounded variation on $[0,1]$



My ANSWER: For $ a) $ $alpha ge beta$ then $f$ is bounded variation . now $ f'(0) $will exists if $alpha ge beta ge 0$



For $b)$ same condition as for $(a)$



Edit answer :$f$ has derivative $$displaystyle f^prime(x) = begin{cases} alpha x^{alpha-1} sinleft(dfrac{1}{x^beta}right) - dfrac{x^alpha}{x^{beta +1}} cosleft(dfrac{1}{x^beta}right) &text{on }(0,1], \\ 0 & text{if }x = 0.
end{cases}$$
Hence $$vert f^prime(x) vert le alpha x^{alpha-1} + x^{alpha - beta -1}$$ The integrals $int_0^1 x^{alpha-1}dx$ and $int_0^1 x^{alpha - beta -1}dx$ both converge for $1 < alpha < 1 +beta $. Hence $$V_0^1(f) le int_0^1 vert f^prime(x) vert dx$$ and $f$ is of bounded variation on $[0,1]$ as the RHS of the inequality is finite.



Is my answer correct ??? or incorrect ?? Please rectify it.










share|cite|improve this question




















  • 1




    Some hints: for a): apply the definition of derivative at zero; for b): for which $gamma in mathbb{R}$ is the integral $$intlimits_{0}^{1} x^{gamma}, dx$$ convergent? Also, are you sure that your formula for the derivative on $(0, 1]$ correct?
    – user539887
    Apr 24 at 21:19












  • for a) $f$ derivative is $$f^prime(0) = begin{cases} alpha 0^{alpha-1} sinleft(frac{1}{0^beta}right) - frac{0^alpha}{0^{beta +1}} cosleft(frac{1}{0^beta}right) &text{on }(0,1], \ 0 & text{if }x = 0. end{cases}$$
    – lomber
    Apr 24 at 23:30










  • @user539887 for b )$gamma < 1$
    – lomber
    Apr 24 at 23:31










  • but what is $gamma$ here?
    – lomber
    Apr 24 at 23:40










  • I repeat: for a), apply the definition of derivative (not use the formula that have no application here; by the way, that formula is still wrong). $gamma$ is any real number, for which you can substitute $alpha-1$ and $alpha-beta-1$.
    – user539887
    Apr 25 at 6:23















up vote
0
down vote

favorite









up vote
0
down vote

favorite











For any positive real numbers $ alpha $ and $beta$, define



$f(x) = begin{cases} x^{alpha} sinfrac{1}{x^beta} && text{if $x in (0,1]$,}\
0 && text{if $x = 0$}end {cases}$



a) For a given $beta > 0$ , find all the values of $alpha$ such that $f'(0)$ exists.



b) For given $beta >0,$ find all the values of $ alpha$ such that $f$ is of bounded variation on $[0,1]$



My ANSWER: For $ a) $ $alpha ge beta$ then $f$ is bounded variation . now $ f'(0) $will exists if $alpha ge beta ge 0$



For $b)$ same condition as for $(a)$



Edit answer :$f$ has derivative $$displaystyle f^prime(x) = begin{cases} alpha x^{alpha-1} sinleft(dfrac{1}{x^beta}right) - dfrac{x^alpha}{x^{beta +1}} cosleft(dfrac{1}{x^beta}right) &text{on }(0,1], \\ 0 & text{if }x = 0.
end{cases}$$
Hence $$vert f^prime(x) vert le alpha x^{alpha-1} + x^{alpha - beta -1}$$ The integrals $int_0^1 x^{alpha-1}dx$ and $int_0^1 x^{alpha - beta -1}dx$ both converge for $1 < alpha < 1 +beta $. Hence $$V_0^1(f) le int_0^1 vert f^prime(x) vert dx$$ and $f$ is of bounded variation on $[0,1]$ as the RHS of the inequality is finite.



Is my answer correct ??? or incorrect ?? Please rectify it.










share|cite|improve this question















For any positive real numbers $ alpha $ and $beta$, define



$f(x) = begin{cases} x^{alpha} sinfrac{1}{x^beta} && text{if $x in (0,1]$,}\
0 && text{if $x = 0$}end {cases}$



a) For a given $beta > 0$ , find all the values of $alpha$ such that $f'(0)$ exists.



b) For given $beta >0,$ find all the values of $ alpha$ such that $f$ is of bounded variation on $[0,1]$



My ANSWER: For $ a) $ $alpha ge beta$ then $f$ is bounded variation . now $ f'(0) $will exists if $alpha ge beta ge 0$



For $b)$ same condition as for $(a)$



Edit answer :$f$ has derivative $$displaystyle f^prime(x) = begin{cases} alpha x^{alpha-1} sinleft(dfrac{1}{x^beta}right) - dfrac{x^alpha}{x^{beta +1}} cosleft(dfrac{1}{x^beta}right) &text{on }(0,1], \\ 0 & text{if }x = 0.
end{cases}$$
Hence $$vert f^prime(x) vert le alpha x^{alpha-1} + x^{alpha - beta -1}$$ The integrals $int_0^1 x^{alpha-1}dx$ and $int_0^1 x^{alpha - beta -1}dx$ both converge for $1 < alpha < 1 +beta $. Hence $$V_0^1(f) le int_0^1 vert f^prime(x) vert dx$$ and $f$ is of bounded variation on $[0,1]$ as the RHS of the inequality is finite.



Is my answer correct ??? or incorrect ?? Please rectify it.







real-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 5 hours ago









Yadati Kiran

266




266










asked Apr 24 at 20:03









lomber

753219




753219








  • 1




    Some hints: for a): apply the definition of derivative at zero; for b): for which $gamma in mathbb{R}$ is the integral $$intlimits_{0}^{1} x^{gamma}, dx$$ convergent? Also, are you sure that your formula for the derivative on $(0, 1]$ correct?
    – user539887
    Apr 24 at 21:19












  • for a) $f$ derivative is $$f^prime(0) = begin{cases} alpha 0^{alpha-1} sinleft(frac{1}{0^beta}right) - frac{0^alpha}{0^{beta +1}} cosleft(frac{1}{0^beta}right) &text{on }(0,1], \ 0 & text{if }x = 0. end{cases}$$
    – lomber
    Apr 24 at 23:30










  • @user539887 for b )$gamma < 1$
    – lomber
    Apr 24 at 23:31










  • but what is $gamma$ here?
    – lomber
    Apr 24 at 23:40










  • I repeat: for a), apply the definition of derivative (not use the formula that have no application here; by the way, that formula is still wrong). $gamma$ is any real number, for which you can substitute $alpha-1$ and $alpha-beta-1$.
    – user539887
    Apr 25 at 6:23
















  • 1




    Some hints: for a): apply the definition of derivative at zero; for b): for which $gamma in mathbb{R}$ is the integral $$intlimits_{0}^{1} x^{gamma}, dx$$ convergent? Also, are you sure that your formula for the derivative on $(0, 1]$ correct?
    – user539887
    Apr 24 at 21:19












  • for a) $f$ derivative is $$f^prime(0) = begin{cases} alpha 0^{alpha-1} sinleft(frac{1}{0^beta}right) - frac{0^alpha}{0^{beta +1}} cosleft(frac{1}{0^beta}right) &text{on }(0,1], \ 0 & text{if }x = 0. end{cases}$$
    – lomber
    Apr 24 at 23:30










  • @user539887 for b )$gamma < 1$
    – lomber
    Apr 24 at 23:31










  • but what is $gamma$ here?
    – lomber
    Apr 24 at 23:40










  • I repeat: for a), apply the definition of derivative (not use the formula that have no application here; by the way, that formula is still wrong). $gamma$ is any real number, for which you can substitute $alpha-1$ and $alpha-beta-1$.
    – user539887
    Apr 25 at 6:23










1




1




Some hints: for a): apply the definition of derivative at zero; for b): for which $gamma in mathbb{R}$ is the integral $$intlimits_{0}^{1} x^{gamma}, dx$$ convergent? Also, are you sure that your formula for the derivative on $(0, 1]$ correct?
– user539887
Apr 24 at 21:19






Some hints: for a): apply the definition of derivative at zero; for b): for which $gamma in mathbb{R}$ is the integral $$intlimits_{0}^{1} x^{gamma}, dx$$ convergent? Also, are you sure that your formula for the derivative on $(0, 1]$ correct?
– user539887
Apr 24 at 21:19














for a) $f$ derivative is $$f^prime(0) = begin{cases} alpha 0^{alpha-1} sinleft(frac{1}{0^beta}right) - frac{0^alpha}{0^{beta +1}} cosleft(frac{1}{0^beta}right) &text{on }(0,1], \ 0 & text{if }x = 0. end{cases}$$
– lomber
Apr 24 at 23:30




for a) $f$ derivative is $$f^prime(0) = begin{cases} alpha 0^{alpha-1} sinleft(frac{1}{0^beta}right) - frac{0^alpha}{0^{beta +1}} cosleft(frac{1}{0^beta}right) &text{on }(0,1], \ 0 & text{if }x = 0. end{cases}$$
– lomber
Apr 24 at 23:30












@user539887 for b )$gamma < 1$
– lomber
Apr 24 at 23:31




@user539887 for b )$gamma < 1$
– lomber
Apr 24 at 23:31












but what is $gamma$ here?
– lomber
Apr 24 at 23:40




but what is $gamma$ here?
– lomber
Apr 24 at 23:40












I repeat: for a), apply the definition of derivative (not use the formula that have no application here; by the way, that formula is still wrong). $gamma$ is any real number, for which you can substitute $alpha-1$ and $alpha-beta-1$.
– user539887
Apr 25 at 6:23






I repeat: for a), apply the definition of derivative (not use the formula that have no application here; by the way, that formula is still wrong). $gamma$ is any real number, for which you can substitute $alpha-1$ and $alpha-beta-1$.
– user539887
Apr 25 at 6:23












1 Answer
1






active

oldest

votes

















up vote
0
down vote













For the first part $f'(0)$ exists if $displaystylelim_{hrightarrow 0^+}dfrac{f(0+h)-f(0)}{h}$ exists. Without loss of generality fix $beta>0$, we have the limit $$displaystylelim_{hrightarrow 0^+}dfrac{(0+h)^{alpha}sinBig(dfrac{1}{(0+h)^{beta}}Big)-0}{h}=lim_{hrightarrow 0^+}h^{alpha-1}sinBig(dfrac{1}{h^{beta}}Big) .$$ Using squeeze theorem we see the limit exists if $alphageq beta+1$.



$rule{17cm}{1pt}$



For the second part we calcualte $f'(x)$.



$$ f'(x)=begin{align}begin{cases}alpha x^{alpha-1}sinBig(dfrac{1}{x^{beta}}Big)-dfrac{beta x^{alpha}}{x^{beta+1}}cosBig(dfrac{1}{x^{beta}}Big),
&xneq0\0, &x=0end{cases}end{align}$$
If total variation is finite we say $f$ is of bounded variation. Also if $f$ is differentiable and its derivative is Riemann-integrable, its total variation is given by



$${displaystyle V_{a}^{b}(f)=int _{a}^{b}|f'(x)|,mathrm {d} x.} .$$



$$V_0^1(f)=int_0^1|f'(x)|dxleqalphaint_0^1x^{alpha-1}dx+betaint_0^1x^{alpha-beta-1}dx=1+dfrac{alpha}{alpha-beta} $$
(The above integrals Riemann integrable only if $alpha-1>-1$ and $alpha-beta-1>-1$). Thus the total variation $V_0^1(f)$ is finite if $alpha>0$ and $alpha>beta$.






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2752165%2fa-find-all-the-values-of-alpha-such-that-f0-exists-b-find-all-the-val%23new-answer', 'question_page');
    }
    );

    Post as a guest
































    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    For the first part $f'(0)$ exists if $displaystylelim_{hrightarrow 0^+}dfrac{f(0+h)-f(0)}{h}$ exists. Without loss of generality fix $beta>0$, we have the limit $$displaystylelim_{hrightarrow 0^+}dfrac{(0+h)^{alpha}sinBig(dfrac{1}{(0+h)^{beta}}Big)-0}{h}=lim_{hrightarrow 0^+}h^{alpha-1}sinBig(dfrac{1}{h^{beta}}Big) .$$ Using squeeze theorem we see the limit exists if $alphageq beta+1$.



    $rule{17cm}{1pt}$



    For the second part we calcualte $f'(x)$.



    $$ f'(x)=begin{align}begin{cases}alpha x^{alpha-1}sinBig(dfrac{1}{x^{beta}}Big)-dfrac{beta x^{alpha}}{x^{beta+1}}cosBig(dfrac{1}{x^{beta}}Big),
    &xneq0\0, &x=0end{cases}end{align}$$
    If total variation is finite we say $f$ is of bounded variation. Also if $f$ is differentiable and its derivative is Riemann-integrable, its total variation is given by



    $${displaystyle V_{a}^{b}(f)=int _{a}^{b}|f'(x)|,mathrm {d} x.} .$$



    $$V_0^1(f)=int_0^1|f'(x)|dxleqalphaint_0^1x^{alpha-1}dx+betaint_0^1x^{alpha-beta-1}dx=1+dfrac{alpha}{alpha-beta} $$
    (The above integrals Riemann integrable only if $alpha-1>-1$ and $alpha-beta-1>-1$). Thus the total variation $V_0^1(f)$ is finite if $alpha>0$ and $alpha>beta$.






    share|cite|improve this answer



























      up vote
      0
      down vote













      For the first part $f'(0)$ exists if $displaystylelim_{hrightarrow 0^+}dfrac{f(0+h)-f(0)}{h}$ exists. Without loss of generality fix $beta>0$, we have the limit $$displaystylelim_{hrightarrow 0^+}dfrac{(0+h)^{alpha}sinBig(dfrac{1}{(0+h)^{beta}}Big)-0}{h}=lim_{hrightarrow 0^+}h^{alpha-1}sinBig(dfrac{1}{h^{beta}}Big) .$$ Using squeeze theorem we see the limit exists if $alphageq beta+1$.



      $rule{17cm}{1pt}$



      For the second part we calcualte $f'(x)$.



      $$ f'(x)=begin{align}begin{cases}alpha x^{alpha-1}sinBig(dfrac{1}{x^{beta}}Big)-dfrac{beta x^{alpha}}{x^{beta+1}}cosBig(dfrac{1}{x^{beta}}Big),
      &xneq0\0, &x=0end{cases}end{align}$$
      If total variation is finite we say $f$ is of bounded variation. Also if $f$ is differentiable and its derivative is Riemann-integrable, its total variation is given by



      $${displaystyle V_{a}^{b}(f)=int _{a}^{b}|f'(x)|,mathrm {d} x.} .$$



      $$V_0^1(f)=int_0^1|f'(x)|dxleqalphaint_0^1x^{alpha-1}dx+betaint_0^1x^{alpha-beta-1}dx=1+dfrac{alpha}{alpha-beta} $$
      (The above integrals Riemann integrable only if $alpha-1>-1$ and $alpha-beta-1>-1$). Thus the total variation $V_0^1(f)$ is finite if $alpha>0$ and $alpha>beta$.






      share|cite|improve this answer

























        up vote
        0
        down vote










        up vote
        0
        down vote









        For the first part $f'(0)$ exists if $displaystylelim_{hrightarrow 0^+}dfrac{f(0+h)-f(0)}{h}$ exists. Without loss of generality fix $beta>0$, we have the limit $$displaystylelim_{hrightarrow 0^+}dfrac{(0+h)^{alpha}sinBig(dfrac{1}{(0+h)^{beta}}Big)-0}{h}=lim_{hrightarrow 0^+}h^{alpha-1}sinBig(dfrac{1}{h^{beta}}Big) .$$ Using squeeze theorem we see the limit exists if $alphageq beta+1$.



        $rule{17cm}{1pt}$



        For the second part we calcualte $f'(x)$.



        $$ f'(x)=begin{align}begin{cases}alpha x^{alpha-1}sinBig(dfrac{1}{x^{beta}}Big)-dfrac{beta x^{alpha}}{x^{beta+1}}cosBig(dfrac{1}{x^{beta}}Big),
        &xneq0\0, &x=0end{cases}end{align}$$
        If total variation is finite we say $f$ is of bounded variation. Also if $f$ is differentiable and its derivative is Riemann-integrable, its total variation is given by



        $${displaystyle V_{a}^{b}(f)=int _{a}^{b}|f'(x)|,mathrm {d} x.} .$$



        $$V_0^1(f)=int_0^1|f'(x)|dxleqalphaint_0^1x^{alpha-1}dx+betaint_0^1x^{alpha-beta-1}dx=1+dfrac{alpha}{alpha-beta} $$
        (The above integrals Riemann integrable only if $alpha-1>-1$ and $alpha-beta-1>-1$). Thus the total variation $V_0^1(f)$ is finite if $alpha>0$ and $alpha>beta$.






        share|cite|improve this answer














        For the first part $f'(0)$ exists if $displaystylelim_{hrightarrow 0^+}dfrac{f(0+h)-f(0)}{h}$ exists. Without loss of generality fix $beta>0$, we have the limit $$displaystylelim_{hrightarrow 0^+}dfrac{(0+h)^{alpha}sinBig(dfrac{1}{(0+h)^{beta}}Big)-0}{h}=lim_{hrightarrow 0^+}h^{alpha-1}sinBig(dfrac{1}{h^{beta}}Big) .$$ Using squeeze theorem we see the limit exists if $alphageq beta+1$.



        $rule{17cm}{1pt}$



        For the second part we calcualte $f'(x)$.



        $$ f'(x)=begin{align}begin{cases}alpha x^{alpha-1}sinBig(dfrac{1}{x^{beta}}Big)-dfrac{beta x^{alpha}}{x^{beta+1}}cosBig(dfrac{1}{x^{beta}}Big),
        &xneq0\0, &x=0end{cases}end{align}$$
        If total variation is finite we say $f$ is of bounded variation. Also if $f$ is differentiable and its derivative is Riemann-integrable, its total variation is given by



        $${displaystyle V_{a}^{b}(f)=int _{a}^{b}|f'(x)|,mathrm {d} x.} .$$



        $$V_0^1(f)=int_0^1|f'(x)|dxleqalphaint_0^1x^{alpha-1}dx+betaint_0^1x^{alpha-beta-1}dx=1+dfrac{alpha}{alpha-beta} $$
        (The above integrals Riemann integrable only if $alpha-1>-1$ and $alpha-beta-1>-1$). Thus the total variation $V_0^1(f)$ is finite if $alpha>0$ and $alpha>beta$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 4 hours ago

























        answered 5 hours ago









        Yadati Kiran

        266




        266






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2752165%2fa-find-all-the-values-of-alpha-such-that-f0-exists-b-find-all-the-val%23new-answer', 'question_page');
            }
            );

            Post as a guest




















































































            Popular posts from this blog

            How do I know what Microsoft account the skydrive app is syncing to?

            When does type information flow backwards in C++?

            Grease: Live!