value of algebric expression
$begingroup$
If $a,b,c$ are three distinct complex number and $displaystyle frac{a}{b-c}+frac{b}{c-a}+frac{c}{a-b}=0$ . Then $displaystyle frac{a^2}{(b-c)^2}+frac{b^2}{(c-a)^2}+frac{c^2}{(a-b)^2}=$
what i have try
$displaystyle bigg(frac{a}{b-c}+frac{b}{c-a}+frac{c}{a-b}bigg)^2=sum_{cyc}frac{a^2}{(b-c)^2}+2frac{ab(a-b)+bc(b-c)+ca(c-a)}{(a-b)(b-c)(c-a)}$
$displaystyle sum_{cyc} frac{a^2}{(b-c)^2}=-2frac{ab(a-b)+bc(b-c)+ca(c-a)}{(a-b)(b-c)(c-a)}$
How do I find value of right side expression?
algebra-precalculus factoring
$endgroup$
add a comment |
$begingroup$
If $a,b,c$ are three distinct complex number and $displaystyle frac{a}{b-c}+frac{b}{c-a}+frac{c}{a-b}=0$ . Then $displaystyle frac{a^2}{(b-c)^2}+frac{b^2}{(c-a)^2}+frac{c^2}{(a-b)^2}=$
what i have try
$displaystyle bigg(frac{a}{b-c}+frac{b}{c-a}+frac{c}{a-b}bigg)^2=sum_{cyc}frac{a^2}{(b-c)^2}+2frac{ab(a-b)+bc(b-c)+ca(c-a)}{(a-b)(b-c)(c-a)}$
$displaystyle sum_{cyc} frac{a^2}{(b-c)^2}=-2frac{ab(a-b)+bc(b-c)+ca(c-a)}{(a-b)(b-c)(c-a)}$
How do I find value of right side expression?
algebra-precalculus factoring
$endgroup$
add a comment |
$begingroup$
If $a,b,c$ are three distinct complex number and $displaystyle frac{a}{b-c}+frac{b}{c-a}+frac{c}{a-b}=0$ . Then $displaystyle frac{a^2}{(b-c)^2}+frac{b^2}{(c-a)^2}+frac{c^2}{(a-b)^2}=$
what i have try
$displaystyle bigg(frac{a}{b-c}+frac{b}{c-a}+frac{c}{a-b}bigg)^2=sum_{cyc}frac{a^2}{(b-c)^2}+2frac{ab(a-b)+bc(b-c)+ca(c-a)}{(a-b)(b-c)(c-a)}$
$displaystyle sum_{cyc} frac{a^2}{(b-c)^2}=-2frac{ab(a-b)+bc(b-c)+ca(c-a)}{(a-b)(b-c)(c-a)}$
How do I find value of right side expression?
algebra-precalculus factoring
$endgroup$
If $a,b,c$ are three distinct complex number and $displaystyle frac{a}{b-c}+frac{b}{c-a}+frac{c}{a-b}=0$ . Then $displaystyle frac{a^2}{(b-c)^2}+frac{b^2}{(c-a)^2}+frac{c^2}{(a-b)^2}=$
what i have try
$displaystyle bigg(frac{a}{b-c}+frac{b}{c-a}+frac{c}{a-b}bigg)^2=sum_{cyc}frac{a^2}{(b-c)^2}+2frac{ab(a-b)+bc(b-c)+ca(c-a)}{(a-b)(b-c)(c-a)}$
$displaystyle sum_{cyc} frac{a^2}{(b-c)^2}=-2frac{ab(a-b)+bc(b-c)+ca(c-a)}{(a-b)(b-c)(c-a)}$
How do I find value of right side expression?
algebra-precalculus factoring
algebra-precalculus factoring
edited Dec 28 '18 at 6:20
Michael Rozenberg
108k1895200
108k1895200
asked Dec 28 '18 at 4:51
jackyjacky
1,211815
1,211815
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You can use the following factoring.
$$sum_{cyc}ab(a-b)=sum_{cyc}(a^2b-a^2c)=(a-b)(a-c)(b-c).$$
$endgroup$
add a comment |
$begingroup$
You can check that the numerator and the denominator are equal but of different sign by simply distributing all the products. You can also work taking common factors in the numerator in several steps, until you reach the expression in the denominator. So, taking account of the minus sign affecting the whole expression, the answer would then be $1$.
Also, while the notation
$$sum frac{a^2}{(b-c)^2}$$
is an understandable shorthand in this context, it is of course mathematically wrong and even misleading if it got out of context.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054576%2fvalue-of-algebric-expression%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can use the following factoring.
$$sum_{cyc}ab(a-b)=sum_{cyc}(a^2b-a^2c)=(a-b)(a-c)(b-c).$$
$endgroup$
add a comment |
$begingroup$
You can use the following factoring.
$$sum_{cyc}ab(a-b)=sum_{cyc}(a^2b-a^2c)=(a-b)(a-c)(b-c).$$
$endgroup$
add a comment |
$begingroup$
You can use the following factoring.
$$sum_{cyc}ab(a-b)=sum_{cyc}(a^2b-a^2c)=(a-b)(a-c)(b-c).$$
$endgroup$
You can use the following factoring.
$$sum_{cyc}ab(a-b)=sum_{cyc}(a^2b-a^2c)=(a-b)(a-c)(b-c).$$
answered Dec 28 '18 at 5:41
Michael RozenbergMichael Rozenberg
108k1895200
108k1895200
add a comment |
add a comment |
$begingroup$
You can check that the numerator and the denominator are equal but of different sign by simply distributing all the products. You can also work taking common factors in the numerator in several steps, until you reach the expression in the denominator. So, taking account of the minus sign affecting the whole expression, the answer would then be $1$.
Also, while the notation
$$sum frac{a^2}{(b-c)^2}$$
is an understandable shorthand in this context, it is of course mathematically wrong and even misleading if it got out of context.
$endgroup$
add a comment |
$begingroup$
You can check that the numerator and the denominator are equal but of different sign by simply distributing all the products. You can also work taking common factors in the numerator in several steps, until you reach the expression in the denominator. So, taking account of the minus sign affecting the whole expression, the answer would then be $1$.
Also, while the notation
$$sum frac{a^2}{(b-c)^2}$$
is an understandable shorthand in this context, it is of course mathematically wrong and even misleading if it got out of context.
$endgroup$
add a comment |
$begingroup$
You can check that the numerator and the denominator are equal but of different sign by simply distributing all the products. You can also work taking common factors in the numerator in several steps, until you reach the expression in the denominator. So, taking account of the minus sign affecting the whole expression, the answer would then be $1$.
Also, while the notation
$$sum frac{a^2}{(b-c)^2}$$
is an understandable shorthand in this context, it is of course mathematically wrong and even misleading if it got out of context.
$endgroup$
You can check that the numerator and the denominator are equal but of different sign by simply distributing all the products. You can also work taking common factors in the numerator in several steps, until you reach the expression in the denominator. So, taking account of the minus sign affecting the whole expression, the answer would then be $1$.
Also, while the notation
$$sum frac{a^2}{(b-c)^2}$$
is an understandable shorthand in this context, it is of course mathematically wrong and even misleading if it got out of context.
answered Dec 28 '18 at 5:03
Alejandro Nasif SalumAlejandro Nasif Salum
4,765118
4,765118
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054576%2fvalue-of-algebric-expression%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown