tangent lines of a differentiable function
$begingroup$
Suppose that $f$ is a differentiable function over an interval like $I$ and for every $a, quad ain I quad text{if}quad g_a(x)=f^{'}(a)(x-a)+f(a), quad text{then:} quad g_a(x)=f(x), |x-a|<delta_a,$ for some $delta_a$ ,$delta_a ge0$. and $quad g_a(x) neq f(x) quad ,|x-a| gedelta_a .$
((tangent line of $f$ at $x=a$ is in touch with it's graph only over an interval containing $a$))
Prove that $f$ is convex or concave over the interval ($I$).
Definitions:
$f$ is convex over an interval like $I$, if for every $a & b in I,quad$if $quad a<bquad$then; $frac {f(x)-f(a)}{x-a} le frac{f(b)-f(a)}{b-a}, a<x<b $
$f$ is concave over an interval like $I$, if for every $a & b in I,quad$if $quad a<bquad$then; $frac {f(x)-f(a)}{x-a} ge frac{f(b)-f(a)}{b-a}, a<x<b $
calculus derivatives
$endgroup$
add a comment |
$begingroup$
Suppose that $f$ is a differentiable function over an interval like $I$ and for every $a, quad ain I quad text{if}quad g_a(x)=f^{'}(a)(x-a)+f(a), quad text{then:} quad g_a(x)=f(x), |x-a|<delta_a,$ for some $delta_a$ ,$delta_a ge0$. and $quad g_a(x) neq f(x) quad ,|x-a| gedelta_a .$
((tangent line of $f$ at $x=a$ is in touch with it's graph only over an interval containing $a$))
Prove that $f$ is convex or concave over the interval ($I$).
Definitions:
$f$ is convex over an interval like $I$, if for every $a & b in I,quad$if $quad a<bquad$then; $frac {f(x)-f(a)}{x-a} le frac{f(b)-f(a)}{b-a}, a<x<b $
$f$ is concave over an interval like $I$, if for every $a & b in I,quad$if $quad a<bquad$then; $frac {f(x)-f(a)}{x-a} ge frac{f(b)-f(a)}{b-a}, a<x<b $
calculus derivatives
$endgroup$
add a comment |
$begingroup$
Suppose that $f$ is a differentiable function over an interval like $I$ and for every $a, quad ain I quad text{if}quad g_a(x)=f^{'}(a)(x-a)+f(a), quad text{then:} quad g_a(x)=f(x), |x-a|<delta_a,$ for some $delta_a$ ,$delta_a ge0$. and $quad g_a(x) neq f(x) quad ,|x-a| gedelta_a .$
((tangent line of $f$ at $x=a$ is in touch with it's graph only over an interval containing $a$))
Prove that $f$ is convex or concave over the interval ($I$).
Definitions:
$f$ is convex over an interval like $I$, if for every $a & b in I,quad$if $quad a<bquad$then; $frac {f(x)-f(a)}{x-a} le frac{f(b)-f(a)}{b-a}, a<x<b $
$f$ is concave over an interval like $I$, if for every $a & b in I,quad$if $quad a<bquad$then; $frac {f(x)-f(a)}{x-a} ge frac{f(b)-f(a)}{b-a}, a<x<b $
calculus derivatives
$endgroup$
Suppose that $f$ is a differentiable function over an interval like $I$ and for every $a, quad ain I quad text{if}quad g_a(x)=f^{'}(a)(x-a)+f(a), quad text{then:} quad g_a(x)=f(x), |x-a|<delta_a,$ for some $delta_a$ ,$delta_a ge0$. and $quad g_a(x) neq f(x) quad ,|x-a| gedelta_a .$
((tangent line of $f$ at $x=a$ is in touch with it's graph only over an interval containing $a$))
Prove that $f$ is convex or concave over the interval ($I$).
Definitions:
$f$ is convex over an interval like $I$, if for every $a & b in I,quad$if $quad a<bquad$then; $frac {f(x)-f(a)}{x-a} le frac{f(b)-f(a)}{b-a}, a<x<b $
$f$ is concave over an interval like $I$, if for every $a & b in I,quad$if $quad a<bquad$then; $frac {f(x)-f(a)}{x-a} ge frac{f(b)-f(a)}{b-a}, a<x<b $
calculus derivatives
calculus derivatives
asked Dec 21 '18 at 5:01
shapoorshapoor
627
627
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048190%2ftangent-lines-of-a-differentiable-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048190%2ftangent-lines-of-a-differentiable-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown