integration question $int_{-1}^{1}left(frac{1-x}{1+x}right)^afrac{dx}{(x-b)^2}$
$begingroup$
How to integrate this integral $displaystyleint_{-1}^{1}bigg(frac{1-x}{1+x}bigg)^afrac{dx}{(x-b)^2}$ where $0<a<1$ and $b>1$
Answer. I put this into online integral calculator, but it said it cann't do this integration.
calculus integration definite-integrals
$endgroup$
add a comment |
$begingroup$
How to integrate this integral $displaystyleint_{-1}^{1}bigg(frac{1-x}{1+x}bigg)^afrac{dx}{(x-b)^2}$ where $0<a<1$ and $b>1$
Answer. I put this into online integral calculator, but it said it cann't do this integration.
calculus integration definite-integrals
$endgroup$
2
$begingroup$
There are a lot of integrals that the online integral calculator can't handle. Try wolfram alpha
$endgroup$
– clathratus
Dec 21 '18 at 5:40
$begingroup$
@clathratus, I used wolfram alpha also, it said 'Standard computation time exceeded'
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 11:54
add a comment |
$begingroup$
How to integrate this integral $displaystyleint_{-1}^{1}bigg(frac{1-x}{1+x}bigg)^afrac{dx}{(x-b)^2}$ where $0<a<1$ and $b>1$
Answer. I put this into online integral calculator, but it said it cann't do this integration.
calculus integration definite-integrals
$endgroup$
How to integrate this integral $displaystyleint_{-1}^{1}bigg(frac{1-x}{1+x}bigg)^afrac{dx}{(x-b)^2}$ where $0<a<1$ and $b>1$
Answer. I put this into online integral calculator, but it said it cann't do this integration.
calculus integration definite-integrals
calculus integration definite-integrals
edited Dec 21 '18 at 5:56
Kemono Chen
3,1891844
3,1891844
asked Dec 21 '18 at 5:33
Dhamnekar WinodDhamnekar Winod
427514
427514
2
$begingroup$
There are a lot of integrals that the online integral calculator can't handle. Try wolfram alpha
$endgroup$
– clathratus
Dec 21 '18 at 5:40
$begingroup$
@clathratus, I used wolfram alpha also, it said 'Standard computation time exceeded'
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 11:54
add a comment |
2
$begingroup$
There are a lot of integrals that the online integral calculator can't handle. Try wolfram alpha
$endgroup$
– clathratus
Dec 21 '18 at 5:40
$begingroup$
@clathratus, I used wolfram alpha also, it said 'Standard computation time exceeded'
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 11:54
2
2
$begingroup$
There are a lot of integrals that the online integral calculator can't handle. Try wolfram alpha
$endgroup$
– clathratus
Dec 21 '18 at 5:40
$begingroup$
There are a lot of integrals that the online integral calculator can't handle. Try wolfram alpha
$endgroup$
– clathratus
Dec 21 '18 at 5:40
$begingroup$
@clathratus, I used wolfram alpha also, it said 'Standard computation time exceeded'
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 11:54
$begingroup$
@clathratus, I used wolfram alpha also, it said 'Standard computation time exceeded'
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 11:54
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
First, substitute $t = (1-x)/(1+x)$.
$$begin{aligned} I = int_{-1}^{1}left(frac{1-x}{1+x}right)^{a}frac{mathrm{d}x}{(x-b)^{2}} &= frac{1}{2}int_{0}^{infty}t^{a}left(frac{x+1}{x-b}right)^{2}mathrm{d}t \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(1-t-b(1+t))^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((1-b) - (1+b)t)^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((b+1)t + (b-1))^{2}}end{aligned}$$
Let $b_{pm} = bpm 1$. Then after $u = b_{+}t/b_{-}$,
$$begin{aligned} I = 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(b_{+}t + b_{-})^{2}} &= frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}int_{0}^{infty}frac{u^{a},mathrm{d}u}{(u+1)^{2}}.end{aligned}$$
Using the beta function
$$ frac{Gamma(x)Gamma(y)}{Gamma(x+y)} = int_{0}^{infty}frac{z^{y-1},mathrm{d}z}{(z+1)^{x+y}},$$
we identify $x=1-a$ and $y=1+a$. Then
$$ I = frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)}.$$
Using the reflection identity $Gamma(z)Gamma(1-z) = pi/sinpi z$ and recursion $Gamma(1+a) = aGamma(a)$, we have
$$ frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)} = Gamma(1-a)aGamma(a) = frac{pi a}{sinpi a}.$$
The answer is then
$$ I = frac{2}{(b-1)^{2}}left(frac{b-1}{b+1}right)^{a}frac{b-1}{b+1}frac{pi a}{sinpi a} = boxed{frac{2}{b^{2}-1}left(frac{b-1}{b+1}right)^{a}frac{pi a}{sinpi a}.}$$
$endgroup$
$begingroup$
why did you multiply the right hand side integral by $frac{1}{b^2-1}$?
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 13:57
$begingroup$
That comes from simplifying the $b$ terms: $(b-1)(b+1)$. Notice the exponent on $b_{-}/b_{+}$.
$endgroup$
– Ininterrompue
Dec 21 '18 at 16:17
$begingroup$
,but $du=frac{b+1}{b-1}dt$ and $u^a=bigg(frac{(b+1)t}{b-1}bigg)^a$. So the term $bigg(frac{b-1}{b+1}bigg)^{a+1}$outside the integral cancels the term Inside the integral.
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 16:51
$begingroup$
So first, you pull $1/b_{-}^{2}$ out of the integral, then you do u-sub. The term $t^{a}$ pulls $(b_{-}/b_{+})^{a}$ out of the integral, while $mathrm{d}t$ pulls another factor of $b_{-}/b_{+}$. There is no cancellation; $(b_{-}/b_{+})^{a+1}$ is the result of the substitution.
$endgroup$
– Ininterrompue
Dec 21 '18 at 18:45
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048211%2fintegration-question-int-11-left-frac1-x1x-righta-fracdxx-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
First, substitute $t = (1-x)/(1+x)$.
$$begin{aligned} I = int_{-1}^{1}left(frac{1-x}{1+x}right)^{a}frac{mathrm{d}x}{(x-b)^{2}} &= frac{1}{2}int_{0}^{infty}t^{a}left(frac{x+1}{x-b}right)^{2}mathrm{d}t \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(1-t-b(1+t))^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((1-b) - (1+b)t)^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((b+1)t + (b-1))^{2}}end{aligned}$$
Let $b_{pm} = bpm 1$. Then after $u = b_{+}t/b_{-}$,
$$begin{aligned} I = 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(b_{+}t + b_{-})^{2}} &= frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}int_{0}^{infty}frac{u^{a},mathrm{d}u}{(u+1)^{2}}.end{aligned}$$
Using the beta function
$$ frac{Gamma(x)Gamma(y)}{Gamma(x+y)} = int_{0}^{infty}frac{z^{y-1},mathrm{d}z}{(z+1)^{x+y}},$$
we identify $x=1-a$ and $y=1+a$. Then
$$ I = frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)}.$$
Using the reflection identity $Gamma(z)Gamma(1-z) = pi/sinpi z$ and recursion $Gamma(1+a) = aGamma(a)$, we have
$$ frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)} = Gamma(1-a)aGamma(a) = frac{pi a}{sinpi a}.$$
The answer is then
$$ I = frac{2}{(b-1)^{2}}left(frac{b-1}{b+1}right)^{a}frac{b-1}{b+1}frac{pi a}{sinpi a} = boxed{frac{2}{b^{2}-1}left(frac{b-1}{b+1}right)^{a}frac{pi a}{sinpi a}.}$$
$endgroup$
$begingroup$
why did you multiply the right hand side integral by $frac{1}{b^2-1}$?
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 13:57
$begingroup$
That comes from simplifying the $b$ terms: $(b-1)(b+1)$. Notice the exponent on $b_{-}/b_{+}$.
$endgroup$
– Ininterrompue
Dec 21 '18 at 16:17
$begingroup$
,but $du=frac{b+1}{b-1}dt$ and $u^a=bigg(frac{(b+1)t}{b-1}bigg)^a$. So the term $bigg(frac{b-1}{b+1}bigg)^{a+1}$outside the integral cancels the term Inside the integral.
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 16:51
$begingroup$
So first, you pull $1/b_{-}^{2}$ out of the integral, then you do u-sub. The term $t^{a}$ pulls $(b_{-}/b_{+})^{a}$ out of the integral, while $mathrm{d}t$ pulls another factor of $b_{-}/b_{+}$. There is no cancellation; $(b_{-}/b_{+})^{a+1}$ is the result of the substitution.
$endgroup$
– Ininterrompue
Dec 21 '18 at 18:45
add a comment |
$begingroup$
First, substitute $t = (1-x)/(1+x)$.
$$begin{aligned} I = int_{-1}^{1}left(frac{1-x}{1+x}right)^{a}frac{mathrm{d}x}{(x-b)^{2}} &= frac{1}{2}int_{0}^{infty}t^{a}left(frac{x+1}{x-b}right)^{2}mathrm{d}t \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(1-t-b(1+t))^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((1-b) - (1+b)t)^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((b+1)t + (b-1))^{2}}end{aligned}$$
Let $b_{pm} = bpm 1$. Then after $u = b_{+}t/b_{-}$,
$$begin{aligned} I = 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(b_{+}t + b_{-})^{2}} &= frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}int_{0}^{infty}frac{u^{a},mathrm{d}u}{(u+1)^{2}}.end{aligned}$$
Using the beta function
$$ frac{Gamma(x)Gamma(y)}{Gamma(x+y)} = int_{0}^{infty}frac{z^{y-1},mathrm{d}z}{(z+1)^{x+y}},$$
we identify $x=1-a$ and $y=1+a$. Then
$$ I = frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)}.$$
Using the reflection identity $Gamma(z)Gamma(1-z) = pi/sinpi z$ and recursion $Gamma(1+a) = aGamma(a)$, we have
$$ frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)} = Gamma(1-a)aGamma(a) = frac{pi a}{sinpi a}.$$
The answer is then
$$ I = frac{2}{(b-1)^{2}}left(frac{b-1}{b+1}right)^{a}frac{b-1}{b+1}frac{pi a}{sinpi a} = boxed{frac{2}{b^{2}-1}left(frac{b-1}{b+1}right)^{a}frac{pi a}{sinpi a}.}$$
$endgroup$
$begingroup$
why did you multiply the right hand side integral by $frac{1}{b^2-1}$?
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 13:57
$begingroup$
That comes from simplifying the $b$ terms: $(b-1)(b+1)$. Notice the exponent on $b_{-}/b_{+}$.
$endgroup$
– Ininterrompue
Dec 21 '18 at 16:17
$begingroup$
,but $du=frac{b+1}{b-1}dt$ and $u^a=bigg(frac{(b+1)t}{b-1}bigg)^a$. So the term $bigg(frac{b-1}{b+1}bigg)^{a+1}$outside the integral cancels the term Inside the integral.
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 16:51
$begingroup$
So first, you pull $1/b_{-}^{2}$ out of the integral, then you do u-sub. The term $t^{a}$ pulls $(b_{-}/b_{+})^{a}$ out of the integral, while $mathrm{d}t$ pulls another factor of $b_{-}/b_{+}$. There is no cancellation; $(b_{-}/b_{+})^{a+1}$ is the result of the substitution.
$endgroup$
– Ininterrompue
Dec 21 '18 at 18:45
add a comment |
$begingroup$
First, substitute $t = (1-x)/(1+x)$.
$$begin{aligned} I = int_{-1}^{1}left(frac{1-x}{1+x}right)^{a}frac{mathrm{d}x}{(x-b)^{2}} &= frac{1}{2}int_{0}^{infty}t^{a}left(frac{x+1}{x-b}right)^{2}mathrm{d}t \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(1-t-b(1+t))^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((1-b) - (1+b)t)^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((b+1)t + (b-1))^{2}}end{aligned}$$
Let $b_{pm} = bpm 1$. Then after $u = b_{+}t/b_{-}$,
$$begin{aligned} I = 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(b_{+}t + b_{-})^{2}} &= frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}int_{0}^{infty}frac{u^{a},mathrm{d}u}{(u+1)^{2}}.end{aligned}$$
Using the beta function
$$ frac{Gamma(x)Gamma(y)}{Gamma(x+y)} = int_{0}^{infty}frac{z^{y-1},mathrm{d}z}{(z+1)^{x+y}},$$
we identify $x=1-a$ and $y=1+a$. Then
$$ I = frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)}.$$
Using the reflection identity $Gamma(z)Gamma(1-z) = pi/sinpi z$ and recursion $Gamma(1+a) = aGamma(a)$, we have
$$ frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)} = Gamma(1-a)aGamma(a) = frac{pi a}{sinpi a}.$$
The answer is then
$$ I = frac{2}{(b-1)^{2}}left(frac{b-1}{b+1}right)^{a}frac{b-1}{b+1}frac{pi a}{sinpi a} = boxed{frac{2}{b^{2}-1}left(frac{b-1}{b+1}right)^{a}frac{pi a}{sinpi a}.}$$
$endgroup$
First, substitute $t = (1-x)/(1+x)$.
$$begin{aligned} I = int_{-1}^{1}left(frac{1-x}{1+x}right)^{a}frac{mathrm{d}x}{(x-b)^{2}} &= frac{1}{2}int_{0}^{infty}t^{a}left(frac{x+1}{x-b}right)^{2}mathrm{d}t \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(1-t-b(1+t))^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((1-b) - (1+b)t)^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((b+1)t + (b-1))^{2}}end{aligned}$$
Let $b_{pm} = bpm 1$. Then after $u = b_{+}t/b_{-}$,
$$begin{aligned} I = 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(b_{+}t + b_{-})^{2}} &= frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}int_{0}^{infty}frac{u^{a},mathrm{d}u}{(u+1)^{2}}.end{aligned}$$
Using the beta function
$$ frac{Gamma(x)Gamma(y)}{Gamma(x+y)} = int_{0}^{infty}frac{z^{y-1},mathrm{d}z}{(z+1)^{x+y}},$$
we identify $x=1-a$ and $y=1+a$. Then
$$ I = frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)}.$$
Using the reflection identity $Gamma(z)Gamma(1-z) = pi/sinpi z$ and recursion $Gamma(1+a) = aGamma(a)$, we have
$$ frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)} = Gamma(1-a)aGamma(a) = frac{pi a}{sinpi a}.$$
The answer is then
$$ I = frac{2}{(b-1)^{2}}left(frac{b-1}{b+1}right)^{a}frac{b-1}{b+1}frac{pi a}{sinpi a} = boxed{frac{2}{b^{2}-1}left(frac{b-1}{b+1}right)^{a}frac{pi a}{sinpi a}.}$$
edited Dec 21 '18 at 7:04
answered Dec 21 '18 at 6:52
IninterrompueIninterrompue
67519
67519
$begingroup$
why did you multiply the right hand side integral by $frac{1}{b^2-1}$?
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 13:57
$begingroup$
That comes from simplifying the $b$ terms: $(b-1)(b+1)$. Notice the exponent on $b_{-}/b_{+}$.
$endgroup$
– Ininterrompue
Dec 21 '18 at 16:17
$begingroup$
,but $du=frac{b+1}{b-1}dt$ and $u^a=bigg(frac{(b+1)t}{b-1}bigg)^a$. So the term $bigg(frac{b-1}{b+1}bigg)^{a+1}$outside the integral cancels the term Inside the integral.
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 16:51
$begingroup$
So first, you pull $1/b_{-}^{2}$ out of the integral, then you do u-sub. The term $t^{a}$ pulls $(b_{-}/b_{+})^{a}$ out of the integral, while $mathrm{d}t$ pulls another factor of $b_{-}/b_{+}$. There is no cancellation; $(b_{-}/b_{+})^{a+1}$ is the result of the substitution.
$endgroup$
– Ininterrompue
Dec 21 '18 at 18:45
add a comment |
$begingroup$
why did you multiply the right hand side integral by $frac{1}{b^2-1}$?
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 13:57
$begingroup$
That comes from simplifying the $b$ terms: $(b-1)(b+1)$. Notice the exponent on $b_{-}/b_{+}$.
$endgroup$
– Ininterrompue
Dec 21 '18 at 16:17
$begingroup$
,but $du=frac{b+1}{b-1}dt$ and $u^a=bigg(frac{(b+1)t}{b-1}bigg)^a$. So the term $bigg(frac{b-1}{b+1}bigg)^{a+1}$outside the integral cancels the term Inside the integral.
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 16:51
$begingroup$
So first, you pull $1/b_{-}^{2}$ out of the integral, then you do u-sub. The term $t^{a}$ pulls $(b_{-}/b_{+})^{a}$ out of the integral, while $mathrm{d}t$ pulls another factor of $b_{-}/b_{+}$. There is no cancellation; $(b_{-}/b_{+})^{a+1}$ is the result of the substitution.
$endgroup$
– Ininterrompue
Dec 21 '18 at 18:45
$begingroup$
why did you multiply the right hand side integral by $frac{1}{b^2-1}$?
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 13:57
$begingroup$
why did you multiply the right hand side integral by $frac{1}{b^2-1}$?
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 13:57
$begingroup$
That comes from simplifying the $b$ terms: $(b-1)(b+1)$. Notice the exponent on $b_{-}/b_{+}$.
$endgroup$
– Ininterrompue
Dec 21 '18 at 16:17
$begingroup$
That comes from simplifying the $b$ terms: $(b-1)(b+1)$. Notice the exponent on $b_{-}/b_{+}$.
$endgroup$
– Ininterrompue
Dec 21 '18 at 16:17
$begingroup$
,but $du=frac{b+1}{b-1}dt$ and $u^a=bigg(frac{(b+1)t}{b-1}bigg)^a$. So the term $bigg(frac{b-1}{b+1}bigg)^{a+1}$outside the integral cancels the term Inside the integral.
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 16:51
$begingroup$
,but $du=frac{b+1}{b-1}dt$ and $u^a=bigg(frac{(b+1)t}{b-1}bigg)^a$. So the term $bigg(frac{b-1}{b+1}bigg)^{a+1}$outside the integral cancels the term Inside the integral.
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 16:51
$begingroup$
So first, you pull $1/b_{-}^{2}$ out of the integral, then you do u-sub. The term $t^{a}$ pulls $(b_{-}/b_{+})^{a}$ out of the integral, while $mathrm{d}t$ pulls another factor of $b_{-}/b_{+}$. There is no cancellation; $(b_{-}/b_{+})^{a+1}$ is the result of the substitution.
$endgroup$
– Ininterrompue
Dec 21 '18 at 18:45
$begingroup$
So first, you pull $1/b_{-}^{2}$ out of the integral, then you do u-sub. The term $t^{a}$ pulls $(b_{-}/b_{+})^{a}$ out of the integral, while $mathrm{d}t$ pulls another factor of $b_{-}/b_{+}$. There is no cancellation; $(b_{-}/b_{+})^{a+1}$ is the result of the substitution.
$endgroup$
– Ininterrompue
Dec 21 '18 at 18:45
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048211%2fintegration-question-int-11-left-frac1-x1x-righta-fracdxx-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
There are a lot of integrals that the online integral calculator can't handle. Try wolfram alpha
$endgroup$
– clathratus
Dec 21 '18 at 5:40
$begingroup$
@clathratus, I used wolfram alpha also, it said 'Standard computation time exceeded'
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 11:54