How to calculate $lim_{n to infty} sum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}$?
$begingroup$
How to calculate $displaystylelim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}$?
My try:
begin{align}
lim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}
&=displaystyle lim_{n to infty} frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1+frac{1}{n}-(tfrac{k}{n})^2}}
\&=displaystylelim_{n to infty}int_{0}^{1}frac{dx}{sqrt{1+frac{1}{n}-x^2}}
\&=displaystylelim_{n to infty}arctan sqrt{n}
\&=frac{pi}{2}
end{align}
But,
I'm not sure whether this's right because I'm not sure whether the second equality is right.
Any helps and new ideas will be highly appreciated!
real-analysis calculus limits
$endgroup$
add a comment |
$begingroup$
How to calculate $displaystylelim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}$?
My try:
begin{align}
lim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}
&=displaystyle lim_{n to infty} frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1+frac{1}{n}-(tfrac{k}{n})^2}}
\&=displaystylelim_{n to infty}int_{0}^{1}frac{dx}{sqrt{1+frac{1}{n}-x^2}}
\&=displaystylelim_{n to infty}arctan sqrt{n}
\&=frac{pi}{2}
end{align}
But,
I'm not sure whether this's right because I'm not sure whether the second equality is right.
Any helps and new ideas will be highly appreciated!
real-analysis calculus limits
$endgroup$
$begingroup$
As written is not correct because in the limit $k/n$ changed to $x,$ however, I believe the final answer is correct.
$endgroup$
– Will M.
Dec 21 '18 at 5:39
add a comment |
$begingroup$
How to calculate $displaystylelim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}$?
My try:
begin{align}
lim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}
&=displaystyle lim_{n to infty} frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1+frac{1}{n}-(tfrac{k}{n})^2}}
\&=displaystylelim_{n to infty}int_{0}^{1}frac{dx}{sqrt{1+frac{1}{n}-x^2}}
\&=displaystylelim_{n to infty}arctan sqrt{n}
\&=frac{pi}{2}
end{align}
But,
I'm not sure whether this's right because I'm not sure whether the second equality is right.
Any helps and new ideas will be highly appreciated!
real-analysis calculus limits
$endgroup$
How to calculate $displaystylelim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}$?
My try:
begin{align}
lim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}
&=displaystyle lim_{n to infty} frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1+frac{1}{n}-(tfrac{k}{n})^2}}
\&=displaystylelim_{n to infty}int_{0}^{1}frac{dx}{sqrt{1+frac{1}{n}-x^2}}
\&=displaystylelim_{n to infty}arctan sqrt{n}
\&=frac{pi}{2}
end{align}
But,
I'm not sure whether this's right because I'm not sure whether the second equality is right.
Any helps and new ideas will be highly appreciated!
real-analysis calculus limits
real-analysis calculus limits
edited Dec 21 '18 at 9:13
Lorenzo B.
1,8602520
1,8602520
asked Dec 21 '18 at 5:21
ZeroZero
39510
39510
$begingroup$
As written is not correct because in the limit $k/n$ changed to $x,$ however, I believe the final answer is correct.
$endgroup$
– Will M.
Dec 21 '18 at 5:39
add a comment |
$begingroup$
As written is not correct because in the limit $k/n$ changed to $x,$ however, I believe the final answer is correct.
$endgroup$
– Will M.
Dec 21 '18 at 5:39
$begingroup$
As written is not correct because in the limit $k/n$ changed to $x,$ however, I believe the final answer is correct.
$endgroup$
– Will M.
Dec 21 '18 at 5:39
$begingroup$
As written is not correct because in the limit $k/n$ changed to $x,$ however, I believe the final answer is correct.
$endgroup$
– Will M.
Dec 21 '18 at 5:39
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} preceq frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+frac{1}{n}-(tfrac{k}{n})^2}} leq frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}} $$
(the symbole $preceq$ means: It is lower than form a $nin mathbb{N}$ to later)
But $$lim_{nto infty} frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}}=int_0^1arcsin(x)dx=frac{pi}{2} $$ and $$lim_{nto infty} frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} =arcsin left(frac{1}{sqrt {1+epsilon}}right)$$ and
$$lim_{epsilon to 0^+} arcsinleft(frac{1}{sqrt {1+epsilon}}right)=frac{pi}{2}.$$
$endgroup$
add a comment |
$begingroup$
To use integral method rigorously, I came up with a new solution.
Notice that(due to the monotonicity)
$$ displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}leint_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}+frac{1}{sqrt{n}}$$
Then we have
$$displaystylelim_{ntoinfty}displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylelim_{ntoinfty}displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}ledisplaystylelim_{ntoinfty}int_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}$$
Considering
$$displaystyleintfrac{dx}{sqrt {n^2+n-x^2}}=arctanfrac{x}{sqrt {n^2+n-x^2}}$$
Then we can arrive at
$$displaystylelim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}=frac{pi}{2}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048202%2fhow-to-calculate-lim-n-to-infty-sum-k-1n-frac1-sqrt-n2n-k2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} preceq frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+frac{1}{n}-(tfrac{k}{n})^2}} leq frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}} $$
(the symbole $preceq$ means: It is lower than form a $nin mathbb{N}$ to later)
But $$lim_{nto infty} frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}}=int_0^1arcsin(x)dx=frac{pi}{2} $$ and $$lim_{nto infty} frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} =arcsin left(frac{1}{sqrt {1+epsilon}}right)$$ and
$$lim_{epsilon to 0^+} arcsinleft(frac{1}{sqrt {1+epsilon}}right)=frac{pi}{2}.$$
$endgroup$
add a comment |
$begingroup$
$$frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} preceq frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+frac{1}{n}-(tfrac{k}{n})^2}} leq frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}} $$
(the symbole $preceq$ means: It is lower than form a $nin mathbb{N}$ to later)
But $$lim_{nto infty} frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}}=int_0^1arcsin(x)dx=frac{pi}{2} $$ and $$lim_{nto infty} frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} =arcsin left(frac{1}{sqrt {1+epsilon}}right)$$ and
$$lim_{epsilon to 0^+} arcsinleft(frac{1}{sqrt {1+epsilon}}right)=frac{pi}{2}.$$
$endgroup$
add a comment |
$begingroup$
$$frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} preceq frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+frac{1}{n}-(tfrac{k}{n})^2}} leq frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}} $$
(the symbole $preceq$ means: It is lower than form a $nin mathbb{N}$ to later)
But $$lim_{nto infty} frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}}=int_0^1arcsin(x)dx=frac{pi}{2} $$ and $$lim_{nto infty} frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} =arcsin left(frac{1}{sqrt {1+epsilon}}right)$$ and
$$lim_{epsilon to 0^+} arcsinleft(frac{1}{sqrt {1+epsilon}}right)=frac{pi}{2}.$$
$endgroup$
$$frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} preceq frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+frac{1}{n}-(tfrac{k}{n})^2}} leq frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}} $$
(the symbole $preceq$ means: It is lower than form a $nin mathbb{N}$ to later)
But $$lim_{nto infty} frac{1}{n}displaystylesum_{k=1}^{n}frac{1}{sqrt {1-(tfrac{k}{n})^2}}=int_0^1arcsin(x)dx=frac{pi}{2} $$ and $$lim_{nto infty} frac{1}{n}sum_{k=1}^{n}frac{1}{sqrt {1+epsilon-(tfrac{k}{n})^2}} =arcsin left(frac{1}{sqrt {1+epsilon}}right)$$ and
$$lim_{epsilon to 0^+} arcsinleft(frac{1}{sqrt {1+epsilon}}right)=frac{pi}{2}.$$
edited Dec 21 '18 at 10:25
amWhy
1
1
answered Dec 21 '18 at 9:36
DarmanDarman
538112
538112
add a comment |
add a comment |
$begingroup$
To use integral method rigorously, I came up with a new solution.
Notice that(due to the monotonicity)
$$ displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}leint_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}+frac{1}{sqrt{n}}$$
Then we have
$$displaystylelim_{ntoinfty}displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylelim_{ntoinfty}displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}ledisplaystylelim_{ntoinfty}int_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}$$
Considering
$$displaystyleintfrac{dx}{sqrt {n^2+n-x^2}}=arctanfrac{x}{sqrt {n^2+n-x^2}}$$
Then we can arrive at
$$displaystylelim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}=frac{pi}{2}$$
$endgroup$
add a comment |
$begingroup$
To use integral method rigorously, I came up with a new solution.
Notice that(due to the monotonicity)
$$ displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}leint_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}+frac{1}{sqrt{n}}$$
Then we have
$$displaystylelim_{ntoinfty}displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylelim_{ntoinfty}displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}ledisplaystylelim_{ntoinfty}int_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}$$
Considering
$$displaystyleintfrac{dx}{sqrt {n^2+n-x^2}}=arctanfrac{x}{sqrt {n^2+n-x^2}}$$
Then we can arrive at
$$displaystylelim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}=frac{pi}{2}$$
$endgroup$
add a comment |
$begingroup$
To use integral method rigorously, I came up with a new solution.
Notice that(due to the monotonicity)
$$ displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}leint_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}+frac{1}{sqrt{n}}$$
Then we have
$$displaystylelim_{ntoinfty}displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylelim_{ntoinfty}displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}ledisplaystylelim_{ntoinfty}int_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}$$
Considering
$$displaystyleintfrac{dx}{sqrt {n^2+n-x^2}}=arctanfrac{x}{sqrt {n^2+n-x^2}}$$
Then we can arrive at
$$displaystylelim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}=frac{pi}{2}$$
$endgroup$
To use integral method rigorously, I came up with a new solution.
Notice that(due to the monotonicity)
$$ displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}leint_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}+frac{1}{sqrt{n}}$$
Then we have
$$displaystylelim_{ntoinfty}displaystyleint_{0}^{n}frac{dx}{sqrt {n^2+n-x^2}} le displaystylelim_{ntoinfty}displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}ledisplaystylelim_{ntoinfty}int_{1}^{n}frac{dx}{sqrt {n^2+n-x^2}}$$
Considering
$$displaystyleintfrac{dx}{sqrt {n^2+n-x^2}}=arctanfrac{x}{sqrt {n^2+n-x^2}}$$
Then we can arrive at
$$displaystylelim_{n to infty} displaystylesum_{k=1}^{n}frac{1}{sqrt {n^2+n-k^2}}=frac{pi}{2}$$
answered Dec 21 '18 at 9:30
ZeroZero
39510
39510
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048202%2fhow-to-calculate-lim-n-to-infty-sum-k-1n-frac1-sqrt-n2n-k2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
As written is not correct because in the limit $k/n$ changed to $x,$ however, I believe the final answer is correct.
$endgroup$
– Will M.
Dec 21 '18 at 5:39