Show that $sum^{infty}_{n=1}(-1)^{n+1}frac{1}{n+x^4}$ is uniformly convergent on $Bbb{R}$












1












$begingroup$


Show that the following series is uniformly convergent on $Bbb{R}$



begin{align}sum^{infty}_{n=1}(-1)^{n+1}dfrac{1}{n+x^4}end{align}



MY TRIAL



I tried using the alternating series test before the $beta_n$ approach.



Let $f_n(x)=dfrac{1}{n+x^4},;forall;xinBbb{R},;ninBbb{N},$
then




  1. $f_n(x)=dfrac{1}{n+x^4}geq 0$

  2. $f_{n+1}(x)leq f_{n}(x)$

  3. $f_n(x)=dfrac{1}{n+x^4}to 0$


Then,
begin{align}beta_n &=suplimits_{xinBbb{R}}left|s_n(x)-sum^{infty}_{i=1}f_i(x)right|\&=suplimits_{xinBbb{R}}left|sum^{n}_{i=1}(-1)^{i+1}f_i(x)-sum^{infty}_{i=1}(-1)^{i+1}f_i(x)right|\&=suplimits_{xinBbb{R}}left|sum^{n}_{i=1}(-1)^{i+1}dfrac{1}{i+x^4}-sum^{infty}_{i=1}(-1)^{i+1}dfrac{1}{i+x^4}right|\&=suplimits_{xinBbb{R}}left|(-1)^{n+2}dfrac{1}{(n+1)+x^4}+(-1)^{n+3}dfrac{1}{(n+2)+x^4}+(-1)^{n+4}dfrac{1}{(n+3)+x^4}cdotsright|\&=suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+dfrac{1}{(n+3)+x^4}-dfrac{1}{(n+4)+x^4}cdotsright|\&=suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}-left(dfrac{1}{(n+2)+x^4}-dfrac{1}{(n+3)+x^4}right)-left(dfrac{1}{(n+4)+x^4}-dfrac{1}{(n+5)+x^4}right)cdotsright|\&leq suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}right|to 0,;;text{as};ntoinftyend{align}
and we are done!



Kindly help me check if I'm correct! Constructive criticisms will be highly welcome! I'll also love to see other approaches to this problem. Thanks!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: Abel-Dirichlet tests.
    $endgroup$
    – xbh
    Sep 5 '18 at 10:34










  • $begingroup$
    Maybe you could use the same technique to estimate the $sup$.
    $endgroup$
    – xbh
    Sep 5 '18 at 10:36
















1












$begingroup$


Show that the following series is uniformly convergent on $Bbb{R}$



begin{align}sum^{infty}_{n=1}(-1)^{n+1}dfrac{1}{n+x^4}end{align}



MY TRIAL



I tried using the alternating series test before the $beta_n$ approach.



Let $f_n(x)=dfrac{1}{n+x^4},;forall;xinBbb{R},;ninBbb{N},$
then




  1. $f_n(x)=dfrac{1}{n+x^4}geq 0$

  2. $f_{n+1}(x)leq f_{n}(x)$

  3. $f_n(x)=dfrac{1}{n+x^4}to 0$


Then,
begin{align}beta_n &=suplimits_{xinBbb{R}}left|s_n(x)-sum^{infty}_{i=1}f_i(x)right|\&=suplimits_{xinBbb{R}}left|sum^{n}_{i=1}(-1)^{i+1}f_i(x)-sum^{infty}_{i=1}(-1)^{i+1}f_i(x)right|\&=suplimits_{xinBbb{R}}left|sum^{n}_{i=1}(-1)^{i+1}dfrac{1}{i+x^4}-sum^{infty}_{i=1}(-1)^{i+1}dfrac{1}{i+x^4}right|\&=suplimits_{xinBbb{R}}left|(-1)^{n+2}dfrac{1}{(n+1)+x^4}+(-1)^{n+3}dfrac{1}{(n+2)+x^4}+(-1)^{n+4}dfrac{1}{(n+3)+x^4}cdotsright|\&=suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+dfrac{1}{(n+3)+x^4}-dfrac{1}{(n+4)+x^4}cdotsright|\&=suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}-left(dfrac{1}{(n+2)+x^4}-dfrac{1}{(n+3)+x^4}right)-left(dfrac{1}{(n+4)+x^4}-dfrac{1}{(n+5)+x^4}right)cdotsright|\&leq suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}right|to 0,;;text{as};ntoinftyend{align}
and we are done!



Kindly help me check if I'm correct! Constructive criticisms will be highly welcome! I'll also love to see other approaches to this problem. Thanks!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: Abel-Dirichlet tests.
    $endgroup$
    – xbh
    Sep 5 '18 at 10:34










  • $begingroup$
    Maybe you could use the same technique to estimate the $sup$.
    $endgroup$
    – xbh
    Sep 5 '18 at 10:36














1












1








1


2



$begingroup$


Show that the following series is uniformly convergent on $Bbb{R}$



begin{align}sum^{infty}_{n=1}(-1)^{n+1}dfrac{1}{n+x^4}end{align}



MY TRIAL



I tried using the alternating series test before the $beta_n$ approach.



Let $f_n(x)=dfrac{1}{n+x^4},;forall;xinBbb{R},;ninBbb{N},$
then




  1. $f_n(x)=dfrac{1}{n+x^4}geq 0$

  2. $f_{n+1}(x)leq f_{n}(x)$

  3. $f_n(x)=dfrac{1}{n+x^4}to 0$


Then,
begin{align}beta_n &=suplimits_{xinBbb{R}}left|s_n(x)-sum^{infty}_{i=1}f_i(x)right|\&=suplimits_{xinBbb{R}}left|sum^{n}_{i=1}(-1)^{i+1}f_i(x)-sum^{infty}_{i=1}(-1)^{i+1}f_i(x)right|\&=suplimits_{xinBbb{R}}left|sum^{n}_{i=1}(-1)^{i+1}dfrac{1}{i+x^4}-sum^{infty}_{i=1}(-1)^{i+1}dfrac{1}{i+x^4}right|\&=suplimits_{xinBbb{R}}left|(-1)^{n+2}dfrac{1}{(n+1)+x^4}+(-1)^{n+3}dfrac{1}{(n+2)+x^4}+(-1)^{n+4}dfrac{1}{(n+3)+x^4}cdotsright|\&=suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+dfrac{1}{(n+3)+x^4}-dfrac{1}{(n+4)+x^4}cdotsright|\&=suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}-left(dfrac{1}{(n+2)+x^4}-dfrac{1}{(n+3)+x^4}right)-left(dfrac{1}{(n+4)+x^4}-dfrac{1}{(n+5)+x^4}right)cdotsright|\&leq suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}right|to 0,;;text{as};ntoinftyend{align}
and we are done!



Kindly help me check if I'm correct! Constructive criticisms will be highly welcome! I'll also love to see other approaches to this problem. Thanks!










share|cite|improve this question











$endgroup$




Show that the following series is uniformly convergent on $Bbb{R}$



begin{align}sum^{infty}_{n=1}(-1)^{n+1}dfrac{1}{n+x^4}end{align}



MY TRIAL



I tried using the alternating series test before the $beta_n$ approach.



Let $f_n(x)=dfrac{1}{n+x^4},;forall;xinBbb{R},;ninBbb{N},$
then




  1. $f_n(x)=dfrac{1}{n+x^4}geq 0$

  2. $f_{n+1}(x)leq f_{n}(x)$

  3. $f_n(x)=dfrac{1}{n+x^4}to 0$


Then,
begin{align}beta_n &=suplimits_{xinBbb{R}}left|s_n(x)-sum^{infty}_{i=1}f_i(x)right|\&=suplimits_{xinBbb{R}}left|sum^{n}_{i=1}(-1)^{i+1}f_i(x)-sum^{infty}_{i=1}(-1)^{i+1}f_i(x)right|\&=suplimits_{xinBbb{R}}left|sum^{n}_{i=1}(-1)^{i+1}dfrac{1}{i+x^4}-sum^{infty}_{i=1}(-1)^{i+1}dfrac{1}{i+x^4}right|\&=suplimits_{xinBbb{R}}left|(-1)^{n+2}dfrac{1}{(n+1)+x^4}+(-1)^{n+3}dfrac{1}{(n+2)+x^4}+(-1)^{n+4}dfrac{1}{(n+3)+x^4}cdotsright|\&=suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+dfrac{1}{(n+3)+x^4}-dfrac{1}{(n+4)+x^4}cdotsright|\&=suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}-left(dfrac{1}{(n+2)+x^4}-dfrac{1}{(n+3)+x^4}right)-left(dfrac{1}{(n+4)+x^4}-dfrac{1}{(n+5)+x^4}right)cdotsright|\&leq suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}right|to 0,;;text{as};ntoinftyend{align}
and we are done!



Kindly help me check if I'm correct! Constructive criticisms will be highly welcome! I'll also love to see other approaches to this problem. Thanks!







real-analysis sequences-and-series analysis convergence uniform-convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 2 at 21:44









Lorenzo B.

1,8602520




1,8602520










asked Sep 5 '18 at 10:29









MichealMicheal

26511




26511












  • $begingroup$
    Hint: Abel-Dirichlet tests.
    $endgroup$
    – xbh
    Sep 5 '18 at 10:34










  • $begingroup$
    Maybe you could use the same technique to estimate the $sup$.
    $endgroup$
    – xbh
    Sep 5 '18 at 10:36


















  • $begingroup$
    Hint: Abel-Dirichlet tests.
    $endgroup$
    – xbh
    Sep 5 '18 at 10:34










  • $begingroup$
    Maybe you could use the same technique to estimate the $sup$.
    $endgroup$
    – xbh
    Sep 5 '18 at 10:36
















$begingroup$
Hint: Abel-Dirichlet tests.
$endgroup$
– xbh
Sep 5 '18 at 10:34




$begingroup$
Hint: Abel-Dirichlet tests.
$endgroup$
– xbh
Sep 5 '18 at 10:34












$begingroup$
Maybe you could use the same technique to estimate the $sup$.
$endgroup$
– xbh
Sep 5 '18 at 10:36




$begingroup$
Maybe you could use the same technique to estimate the $sup$.
$endgroup$
– xbh
Sep 5 '18 at 10:36










1 Answer
1






active

oldest

votes


















0












$begingroup$

For future readers, I present two proofs:



METHOD I: DIRICHLET'S TEST



The Dirichlet's test for uniform convergence can be found here.



Let $;epsilon>0,; xinBbb{R}$ and $ninBbb{N}$ be fixed but arbitrary. Define



begin{align}f_n(x)=(-1)^{n+1};;text{and };;g_{n}(x)=dfrac{1}{n+x^4}end{align}
Then, uniform boundedness is implied, since
begin{align}
&left|F_n(x)right|=left|sum^{n}_{m}(-1)^{m+1} right|leq 1,end{align}

The sequence ${g_n(x)}_{nin Bbb{N}}$ is decreasing, since
begin{align}
dfrac{n+x^4}{(n+1)+x^4}leq dfrac{(n+1)+x^4}{(n+1)+x^4}=1implies g_{n+1}(x)leq g_{n}(x)end{align}

By Archmidean principle, there exists $N(epsilon)$ such that $N(epsilon)>epsilon$ and
begin{align}
&left|g_n(x)-0right|=left|dfrac{1}{n+x^4}-0 right|=dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,;forall;ngeq N(epsilon)end{align}

Hence, ${g_n(x)}_{nin Bbb{N}}$ converges uniformly on $Bbb{R}$ and, by Dirichlet's test, $sum^{infty}_{n=1}f_n(x)g_n(x)$ converges uniformly on $Bbb{R}$.



METHOD II: UNIFORM CAUCHY CRITERION



Let $;epsilon>0$, $m,ninBbb{N}$ be given such that $mgeq n$ and $xinBbb{R}$ be arbitrary. Define ${f_n(x)}_{nin Bbb{N}}$ and ${g_n(x)}_{nin Bbb{N}}$ as before. Then,



begin{align}left|sum^{m}_{k=1}f_k(x)g_k(x)-sum^{n}_{k=1}f_k(x)g_k(x) right|&=left|sum^{m}_{k=n+1}f_k(x)g_k(x)right|\&=left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|end{align}
Expanding, we get
begin{align}left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|&=left|(-1)^{n+2}dfrac{1}{(n+1)+x^4}+(-1)^{n+3}dfrac{1}{(n+2)+x^4}+cdots +(-1)^{n+1}dfrac{1}{n+x^4}right|\&=left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +(-1)^{m-n-2}dfrac{1}{(m-1)+x^4}+(-1)^{m-n-1}dfrac{1}{m+x^4}right|\&leq left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}right|+cdots +left|dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}right|\&= dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}\&= dfrac{1}{(n+1)+x^4}-left[dfrac{1}{(n+2)+x^4}-dfrac{1}{(n+2)+x^4}right]-cdots \&;-left[dfrac{1}{(m-1)+x^4}-dfrac{1}{(m-1)+x^4}right]-dfrac{1}{m+x^4}\&leq dfrac{1}{(n+1)+x^4}.end{align}
As shown in Method I, there exists $N(epsilon)$ such that $,;forall;ngeq N(epsilon)$,
begin{align}
dfrac{1}{(n+1)+x^4}leq dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,end{align}

and we're done!






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2906111%2fshow-that-sum-infty-n-1-1n1-frac1nx4-is-uniformly-convergent%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    For future readers, I present two proofs:



    METHOD I: DIRICHLET'S TEST



    The Dirichlet's test for uniform convergence can be found here.



    Let $;epsilon>0,; xinBbb{R}$ and $ninBbb{N}$ be fixed but arbitrary. Define



    begin{align}f_n(x)=(-1)^{n+1};;text{and };;g_{n}(x)=dfrac{1}{n+x^4}end{align}
    Then, uniform boundedness is implied, since
    begin{align}
    &left|F_n(x)right|=left|sum^{n}_{m}(-1)^{m+1} right|leq 1,end{align}

    The sequence ${g_n(x)}_{nin Bbb{N}}$ is decreasing, since
    begin{align}
    dfrac{n+x^4}{(n+1)+x^4}leq dfrac{(n+1)+x^4}{(n+1)+x^4}=1implies g_{n+1}(x)leq g_{n}(x)end{align}

    By Archmidean principle, there exists $N(epsilon)$ such that $N(epsilon)>epsilon$ and
    begin{align}
    &left|g_n(x)-0right|=left|dfrac{1}{n+x^4}-0 right|=dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,;forall;ngeq N(epsilon)end{align}

    Hence, ${g_n(x)}_{nin Bbb{N}}$ converges uniformly on $Bbb{R}$ and, by Dirichlet's test, $sum^{infty}_{n=1}f_n(x)g_n(x)$ converges uniformly on $Bbb{R}$.



    METHOD II: UNIFORM CAUCHY CRITERION



    Let $;epsilon>0$, $m,ninBbb{N}$ be given such that $mgeq n$ and $xinBbb{R}$ be arbitrary. Define ${f_n(x)}_{nin Bbb{N}}$ and ${g_n(x)}_{nin Bbb{N}}$ as before. Then,



    begin{align}left|sum^{m}_{k=1}f_k(x)g_k(x)-sum^{n}_{k=1}f_k(x)g_k(x) right|&=left|sum^{m}_{k=n+1}f_k(x)g_k(x)right|\&=left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|end{align}
    Expanding, we get
    begin{align}left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|&=left|(-1)^{n+2}dfrac{1}{(n+1)+x^4}+(-1)^{n+3}dfrac{1}{(n+2)+x^4}+cdots +(-1)^{n+1}dfrac{1}{n+x^4}right|\&=left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +(-1)^{m-n-2}dfrac{1}{(m-1)+x^4}+(-1)^{m-n-1}dfrac{1}{m+x^4}right|\&leq left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}right|+cdots +left|dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}right|\&= dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}\&= dfrac{1}{(n+1)+x^4}-left[dfrac{1}{(n+2)+x^4}-dfrac{1}{(n+2)+x^4}right]-cdots \&;-left[dfrac{1}{(m-1)+x^4}-dfrac{1}{(m-1)+x^4}right]-dfrac{1}{m+x^4}\&leq dfrac{1}{(n+1)+x^4}.end{align}
    As shown in Method I, there exists $N(epsilon)$ such that $,;forall;ngeq N(epsilon)$,
    begin{align}
    dfrac{1}{(n+1)+x^4}leq dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,end{align}

    and we're done!






    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$

      For future readers, I present two proofs:



      METHOD I: DIRICHLET'S TEST



      The Dirichlet's test for uniform convergence can be found here.



      Let $;epsilon>0,; xinBbb{R}$ and $ninBbb{N}$ be fixed but arbitrary. Define



      begin{align}f_n(x)=(-1)^{n+1};;text{and };;g_{n}(x)=dfrac{1}{n+x^4}end{align}
      Then, uniform boundedness is implied, since
      begin{align}
      &left|F_n(x)right|=left|sum^{n}_{m}(-1)^{m+1} right|leq 1,end{align}

      The sequence ${g_n(x)}_{nin Bbb{N}}$ is decreasing, since
      begin{align}
      dfrac{n+x^4}{(n+1)+x^4}leq dfrac{(n+1)+x^4}{(n+1)+x^4}=1implies g_{n+1}(x)leq g_{n}(x)end{align}

      By Archmidean principle, there exists $N(epsilon)$ such that $N(epsilon)>epsilon$ and
      begin{align}
      &left|g_n(x)-0right|=left|dfrac{1}{n+x^4}-0 right|=dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,;forall;ngeq N(epsilon)end{align}

      Hence, ${g_n(x)}_{nin Bbb{N}}$ converges uniformly on $Bbb{R}$ and, by Dirichlet's test, $sum^{infty}_{n=1}f_n(x)g_n(x)$ converges uniformly on $Bbb{R}$.



      METHOD II: UNIFORM CAUCHY CRITERION



      Let $;epsilon>0$, $m,ninBbb{N}$ be given such that $mgeq n$ and $xinBbb{R}$ be arbitrary. Define ${f_n(x)}_{nin Bbb{N}}$ and ${g_n(x)}_{nin Bbb{N}}$ as before. Then,



      begin{align}left|sum^{m}_{k=1}f_k(x)g_k(x)-sum^{n}_{k=1}f_k(x)g_k(x) right|&=left|sum^{m}_{k=n+1}f_k(x)g_k(x)right|\&=left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|end{align}
      Expanding, we get
      begin{align}left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|&=left|(-1)^{n+2}dfrac{1}{(n+1)+x^4}+(-1)^{n+3}dfrac{1}{(n+2)+x^4}+cdots +(-1)^{n+1}dfrac{1}{n+x^4}right|\&=left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +(-1)^{m-n-2}dfrac{1}{(m-1)+x^4}+(-1)^{m-n-1}dfrac{1}{m+x^4}right|\&leq left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}right|+cdots +left|dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}right|\&= dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}\&= dfrac{1}{(n+1)+x^4}-left[dfrac{1}{(n+2)+x^4}-dfrac{1}{(n+2)+x^4}right]-cdots \&;-left[dfrac{1}{(m-1)+x^4}-dfrac{1}{(m-1)+x^4}right]-dfrac{1}{m+x^4}\&leq dfrac{1}{(n+1)+x^4}.end{align}
      As shown in Method I, there exists $N(epsilon)$ such that $,;forall;ngeq N(epsilon)$,
      begin{align}
      dfrac{1}{(n+1)+x^4}leq dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,end{align}

      and we're done!






      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        For future readers, I present two proofs:



        METHOD I: DIRICHLET'S TEST



        The Dirichlet's test for uniform convergence can be found here.



        Let $;epsilon>0,; xinBbb{R}$ and $ninBbb{N}$ be fixed but arbitrary. Define



        begin{align}f_n(x)=(-1)^{n+1};;text{and };;g_{n}(x)=dfrac{1}{n+x^4}end{align}
        Then, uniform boundedness is implied, since
        begin{align}
        &left|F_n(x)right|=left|sum^{n}_{m}(-1)^{m+1} right|leq 1,end{align}

        The sequence ${g_n(x)}_{nin Bbb{N}}$ is decreasing, since
        begin{align}
        dfrac{n+x^4}{(n+1)+x^4}leq dfrac{(n+1)+x^4}{(n+1)+x^4}=1implies g_{n+1}(x)leq g_{n}(x)end{align}

        By Archmidean principle, there exists $N(epsilon)$ such that $N(epsilon)>epsilon$ and
        begin{align}
        &left|g_n(x)-0right|=left|dfrac{1}{n+x^4}-0 right|=dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,;forall;ngeq N(epsilon)end{align}

        Hence, ${g_n(x)}_{nin Bbb{N}}$ converges uniformly on $Bbb{R}$ and, by Dirichlet's test, $sum^{infty}_{n=1}f_n(x)g_n(x)$ converges uniformly on $Bbb{R}$.



        METHOD II: UNIFORM CAUCHY CRITERION



        Let $;epsilon>0$, $m,ninBbb{N}$ be given such that $mgeq n$ and $xinBbb{R}$ be arbitrary. Define ${f_n(x)}_{nin Bbb{N}}$ and ${g_n(x)}_{nin Bbb{N}}$ as before. Then,



        begin{align}left|sum^{m}_{k=1}f_k(x)g_k(x)-sum^{n}_{k=1}f_k(x)g_k(x) right|&=left|sum^{m}_{k=n+1}f_k(x)g_k(x)right|\&=left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|end{align}
        Expanding, we get
        begin{align}left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|&=left|(-1)^{n+2}dfrac{1}{(n+1)+x^4}+(-1)^{n+3}dfrac{1}{(n+2)+x^4}+cdots +(-1)^{n+1}dfrac{1}{n+x^4}right|\&=left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +(-1)^{m-n-2}dfrac{1}{(m-1)+x^4}+(-1)^{m-n-1}dfrac{1}{m+x^4}right|\&leq left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}right|+cdots +left|dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}right|\&= dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}\&= dfrac{1}{(n+1)+x^4}-left[dfrac{1}{(n+2)+x^4}-dfrac{1}{(n+2)+x^4}right]-cdots \&;-left[dfrac{1}{(m-1)+x^4}-dfrac{1}{(m-1)+x^4}right]-dfrac{1}{m+x^4}\&leq dfrac{1}{(n+1)+x^4}.end{align}
        As shown in Method I, there exists $N(epsilon)$ such that $,;forall;ngeq N(epsilon)$,
        begin{align}
        dfrac{1}{(n+1)+x^4}leq dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,end{align}

        and we're done!






        share|cite|improve this answer











        $endgroup$



        For future readers, I present two proofs:



        METHOD I: DIRICHLET'S TEST



        The Dirichlet's test for uniform convergence can be found here.



        Let $;epsilon>0,; xinBbb{R}$ and $ninBbb{N}$ be fixed but arbitrary. Define



        begin{align}f_n(x)=(-1)^{n+1};;text{and };;g_{n}(x)=dfrac{1}{n+x^4}end{align}
        Then, uniform boundedness is implied, since
        begin{align}
        &left|F_n(x)right|=left|sum^{n}_{m}(-1)^{m+1} right|leq 1,end{align}

        The sequence ${g_n(x)}_{nin Bbb{N}}$ is decreasing, since
        begin{align}
        dfrac{n+x^4}{(n+1)+x^4}leq dfrac{(n+1)+x^4}{(n+1)+x^4}=1implies g_{n+1}(x)leq g_{n}(x)end{align}

        By Archmidean principle, there exists $N(epsilon)$ such that $N(epsilon)>epsilon$ and
        begin{align}
        &left|g_n(x)-0right|=left|dfrac{1}{n+x^4}-0 right|=dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,;forall;ngeq N(epsilon)end{align}

        Hence, ${g_n(x)}_{nin Bbb{N}}$ converges uniformly on $Bbb{R}$ and, by Dirichlet's test, $sum^{infty}_{n=1}f_n(x)g_n(x)$ converges uniformly on $Bbb{R}$.



        METHOD II: UNIFORM CAUCHY CRITERION



        Let $;epsilon>0$, $m,ninBbb{N}$ be given such that $mgeq n$ and $xinBbb{R}$ be arbitrary. Define ${f_n(x)}_{nin Bbb{N}}$ and ${g_n(x)}_{nin Bbb{N}}$ as before. Then,



        begin{align}left|sum^{m}_{k=1}f_k(x)g_k(x)-sum^{n}_{k=1}f_k(x)g_k(x) right|&=left|sum^{m}_{k=n+1}f_k(x)g_k(x)right|\&=left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|end{align}
        Expanding, we get
        begin{align}left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|&=left|(-1)^{n+2}dfrac{1}{(n+1)+x^4}+(-1)^{n+3}dfrac{1}{(n+2)+x^4}+cdots +(-1)^{n+1}dfrac{1}{n+x^4}right|\&=left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +(-1)^{m-n-2}dfrac{1}{(m-1)+x^4}+(-1)^{m-n-1}dfrac{1}{m+x^4}right|\&leq left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}right|+cdots +left|dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}right|\&= dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}\&= dfrac{1}{(n+1)+x^4}-left[dfrac{1}{(n+2)+x^4}-dfrac{1}{(n+2)+x^4}right]-cdots \&;-left[dfrac{1}{(m-1)+x^4}-dfrac{1}{(m-1)+x^4}right]-dfrac{1}{m+x^4}\&leq dfrac{1}{(n+1)+x^4}.end{align}
        As shown in Method I, there exists $N(epsilon)$ such that $,;forall;ngeq N(epsilon)$,
        begin{align}
        dfrac{1}{(n+1)+x^4}leq dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,end{align}

        and we're done!







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 2 at 20:54

























        answered Jan 2 at 20:49









        Omojola MichealOmojola Micheal

        2,004424




        2,004424






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2906111%2fshow-that-sum-infty-n-1-1n1-frac1nx4-is-uniformly-convergent%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How do I know what Microsoft account the skydrive app is syncing to?

            When does type information flow backwards in C++?

            Grease: Live!