Show that $sum^{infty}_{n=1}(-1)^{n+1}frac{1}{n+x^4}$ is uniformly convergent on $Bbb{R}$
$begingroup$
Show that the following series is uniformly convergent on $Bbb{R}$
begin{align}sum^{infty}_{n=1}(-1)^{n+1}dfrac{1}{n+x^4}end{align}
MY TRIAL
I tried using the alternating series test before the $beta_n$ approach.
Let $f_n(x)=dfrac{1}{n+x^4},;forall;xinBbb{R},;ninBbb{N},$
then
- $f_n(x)=dfrac{1}{n+x^4}geq 0$
- $f_{n+1}(x)leq f_{n}(x)$
- $f_n(x)=dfrac{1}{n+x^4}to 0$
Then,
begin{align}beta_n &=suplimits_{xinBbb{R}}left|s_n(x)-sum^{infty}_{i=1}f_i(x)right|\&=suplimits_{xinBbb{R}}left|sum^{n}_{i=1}(-1)^{i+1}f_i(x)-sum^{infty}_{i=1}(-1)^{i+1}f_i(x)right|\&=suplimits_{xinBbb{R}}left|sum^{n}_{i=1}(-1)^{i+1}dfrac{1}{i+x^4}-sum^{infty}_{i=1}(-1)^{i+1}dfrac{1}{i+x^4}right|\&=suplimits_{xinBbb{R}}left|(-1)^{n+2}dfrac{1}{(n+1)+x^4}+(-1)^{n+3}dfrac{1}{(n+2)+x^4}+(-1)^{n+4}dfrac{1}{(n+3)+x^4}cdotsright|\&=suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+dfrac{1}{(n+3)+x^4}-dfrac{1}{(n+4)+x^4}cdotsright|\&=suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}-left(dfrac{1}{(n+2)+x^4}-dfrac{1}{(n+3)+x^4}right)-left(dfrac{1}{(n+4)+x^4}-dfrac{1}{(n+5)+x^4}right)cdotsright|\&leq suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}right|to 0,;;text{as};ntoinftyend{align}
and we are done!
Kindly help me check if I'm correct! Constructive criticisms will be highly welcome! I'll also love to see other approaches to this problem. Thanks!
real-analysis sequences-and-series analysis convergence uniform-convergence
$endgroup$
add a comment |
$begingroup$
Show that the following series is uniformly convergent on $Bbb{R}$
begin{align}sum^{infty}_{n=1}(-1)^{n+1}dfrac{1}{n+x^4}end{align}
MY TRIAL
I tried using the alternating series test before the $beta_n$ approach.
Let $f_n(x)=dfrac{1}{n+x^4},;forall;xinBbb{R},;ninBbb{N},$
then
- $f_n(x)=dfrac{1}{n+x^4}geq 0$
- $f_{n+1}(x)leq f_{n}(x)$
- $f_n(x)=dfrac{1}{n+x^4}to 0$
Then,
begin{align}beta_n &=suplimits_{xinBbb{R}}left|s_n(x)-sum^{infty}_{i=1}f_i(x)right|\&=suplimits_{xinBbb{R}}left|sum^{n}_{i=1}(-1)^{i+1}f_i(x)-sum^{infty}_{i=1}(-1)^{i+1}f_i(x)right|\&=suplimits_{xinBbb{R}}left|sum^{n}_{i=1}(-1)^{i+1}dfrac{1}{i+x^4}-sum^{infty}_{i=1}(-1)^{i+1}dfrac{1}{i+x^4}right|\&=suplimits_{xinBbb{R}}left|(-1)^{n+2}dfrac{1}{(n+1)+x^4}+(-1)^{n+3}dfrac{1}{(n+2)+x^4}+(-1)^{n+4}dfrac{1}{(n+3)+x^4}cdotsright|\&=suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+dfrac{1}{(n+3)+x^4}-dfrac{1}{(n+4)+x^4}cdotsright|\&=suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}-left(dfrac{1}{(n+2)+x^4}-dfrac{1}{(n+3)+x^4}right)-left(dfrac{1}{(n+4)+x^4}-dfrac{1}{(n+5)+x^4}right)cdotsright|\&leq suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}right|to 0,;;text{as};ntoinftyend{align}
and we are done!
Kindly help me check if I'm correct! Constructive criticisms will be highly welcome! I'll also love to see other approaches to this problem. Thanks!
real-analysis sequences-and-series analysis convergence uniform-convergence
$endgroup$
$begingroup$
Hint: Abel-Dirichlet tests.
$endgroup$
– xbh
Sep 5 '18 at 10:34
$begingroup$
Maybe you could use the same technique to estimate the $sup$.
$endgroup$
– xbh
Sep 5 '18 at 10:36
add a comment |
$begingroup$
Show that the following series is uniformly convergent on $Bbb{R}$
begin{align}sum^{infty}_{n=1}(-1)^{n+1}dfrac{1}{n+x^4}end{align}
MY TRIAL
I tried using the alternating series test before the $beta_n$ approach.
Let $f_n(x)=dfrac{1}{n+x^4},;forall;xinBbb{R},;ninBbb{N},$
then
- $f_n(x)=dfrac{1}{n+x^4}geq 0$
- $f_{n+1}(x)leq f_{n}(x)$
- $f_n(x)=dfrac{1}{n+x^4}to 0$
Then,
begin{align}beta_n &=suplimits_{xinBbb{R}}left|s_n(x)-sum^{infty}_{i=1}f_i(x)right|\&=suplimits_{xinBbb{R}}left|sum^{n}_{i=1}(-1)^{i+1}f_i(x)-sum^{infty}_{i=1}(-1)^{i+1}f_i(x)right|\&=suplimits_{xinBbb{R}}left|sum^{n}_{i=1}(-1)^{i+1}dfrac{1}{i+x^4}-sum^{infty}_{i=1}(-1)^{i+1}dfrac{1}{i+x^4}right|\&=suplimits_{xinBbb{R}}left|(-1)^{n+2}dfrac{1}{(n+1)+x^4}+(-1)^{n+3}dfrac{1}{(n+2)+x^4}+(-1)^{n+4}dfrac{1}{(n+3)+x^4}cdotsright|\&=suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+dfrac{1}{(n+3)+x^4}-dfrac{1}{(n+4)+x^4}cdotsright|\&=suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}-left(dfrac{1}{(n+2)+x^4}-dfrac{1}{(n+3)+x^4}right)-left(dfrac{1}{(n+4)+x^4}-dfrac{1}{(n+5)+x^4}right)cdotsright|\&leq suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}right|to 0,;;text{as};ntoinftyend{align}
and we are done!
Kindly help me check if I'm correct! Constructive criticisms will be highly welcome! I'll also love to see other approaches to this problem. Thanks!
real-analysis sequences-and-series analysis convergence uniform-convergence
$endgroup$
Show that the following series is uniformly convergent on $Bbb{R}$
begin{align}sum^{infty}_{n=1}(-1)^{n+1}dfrac{1}{n+x^4}end{align}
MY TRIAL
I tried using the alternating series test before the $beta_n$ approach.
Let $f_n(x)=dfrac{1}{n+x^4},;forall;xinBbb{R},;ninBbb{N},$
then
- $f_n(x)=dfrac{1}{n+x^4}geq 0$
- $f_{n+1}(x)leq f_{n}(x)$
- $f_n(x)=dfrac{1}{n+x^4}to 0$
Then,
begin{align}beta_n &=suplimits_{xinBbb{R}}left|s_n(x)-sum^{infty}_{i=1}f_i(x)right|\&=suplimits_{xinBbb{R}}left|sum^{n}_{i=1}(-1)^{i+1}f_i(x)-sum^{infty}_{i=1}(-1)^{i+1}f_i(x)right|\&=suplimits_{xinBbb{R}}left|sum^{n}_{i=1}(-1)^{i+1}dfrac{1}{i+x^4}-sum^{infty}_{i=1}(-1)^{i+1}dfrac{1}{i+x^4}right|\&=suplimits_{xinBbb{R}}left|(-1)^{n+2}dfrac{1}{(n+1)+x^4}+(-1)^{n+3}dfrac{1}{(n+2)+x^4}+(-1)^{n+4}dfrac{1}{(n+3)+x^4}cdotsright|\&=suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+dfrac{1}{(n+3)+x^4}-dfrac{1}{(n+4)+x^4}cdotsright|\&=suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}-left(dfrac{1}{(n+2)+x^4}-dfrac{1}{(n+3)+x^4}right)-left(dfrac{1}{(n+4)+x^4}-dfrac{1}{(n+5)+x^4}right)cdotsright|\&leq suplimits_{xinBbb{R}}left|dfrac{1}{(n+1)+x^4}right|to 0,;;text{as};ntoinftyend{align}
and we are done!
Kindly help me check if I'm correct! Constructive criticisms will be highly welcome! I'll also love to see other approaches to this problem. Thanks!
real-analysis sequences-and-series analysis convergence uniform-convergence
real-analysis sequences-and-series analysis convergence uniform-convergence
edited Jan 2 at 21:44
Lorenzo B.
1,8602520
1,8602520
asked Sep 5 '18 at 10:29
MichealMicheal
26511
26511
$begingroup$
Hint: Abel-Dirichlet tests.
$endgroup$
– xbh
Sep 5 '18 at 10:34
$begingroup$
Maybe you could use the same technique to estimate the $sup$.
$endgroup$
– xbh
Sep 5 '18 at 10:36
add a comment |
$begingroup$
Hint: Abel-Dirichlet tests.
$endgroup$
– xbh
Sep 5 '18 at 10:34
$begingroup$
Maybe you could use the same technique to estimate the $sup$.
$endgroup$
– xbh
Sep 5 '18 at 10:36
$begingroup$
Hint: Abel-Dirichlet tests.
$endgroup$
– xbh
Sep 5 '18 at 10:34
$begingroup$
Hint: Abel-Dirichlet tests.
$endgroup$
– xbh
Sep 5 '18 at 10:34
$begingroup$
Maybe you could use the same technique to estimate the $sup$.
$endgroup$
– xbh
Sep 5 '18 at 10:36
$begingroup$
Maybe you could use the same technique to estimate the $sup$.
$endgroup$
– xbh
Sep 5 '18 at 10:36
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For future readers, I present two proofs:
METHOD I: DIRICHLET'S TEST
The Dirichlet's test for uniform convergence can be found here.
Let $;epsilon>0,; xinBbb{R}$ and $ninBbb{N}$ be fixed but arbitrary. Define
begin{align}f_n(x)=(-1)^{n+1};;text{and };;g_{n}(x)=dfrac{1}{n+x^4}end{align}
Then, uniform boundedness is implied, since
begin{align}
&left|F_n(x)right|=left|sum^{n}_{m}(-1)^{m+1} right|leq 1,end{align}
The sequence ${g_n(x)}_{nin Bbb{N}}$ is decreasing, since
begin{align}
dfrac{n+x^4}{(n+1)+x^4}leq dfrac{(n+1)+x^4}{(n+1)+x^4}=1implies g_{n+1}(x)leq g_{n}(x)end{align}
By Archmidean principle, there exists $N(epsilon)$ such that $N(epsilon)>epsilon$ and
begin{align}
&left|g_n(x)-0right|=left|dfrac{1}{n+x^4}-0 right|=dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,;forall;ngeq N(epsilon)end{align}
Hence, ${g_n(x)}_{nin Bbb{N}}$ converges uniformly on $Bbb{R}$ and, by Dirichlet's test, $sum^{infty}_{n=1}f_n(x)g_n(x)$ converges uniformly on $Bbb{R}$.
METHOD II: UNIFORM CAUCHY CRITERION
Let $;epsilon>0$, $m,ninBbb{N}$ be given such that $mgeq n$ and $xinBbb{R}$ be arbitrary. Define ${f_n(x)}_{nin Bbb{N}}$ and ${g_n(x)}_{nin Bbb{N}}$ as before. Then,
begin{align}left|sum^{m}_{k=1}f_k(x)g_k(x)-sum^{n}_{k=1}f_k(x)g_k(x) right|&=left|sum^{m}_{k=n+1}f_k(x)g_k(x)right|\&=left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|end{align}
Expanding, we get
begin{align}left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|&=left|(-1)^{n+2}dfrac{1}{(n+1)+x^4}+(-1)^{n+3}dfrac{1}{(n+2)+x^4}+cdots +(-1)^{n+1}dfrac{1}{n+x^4}right|\&=left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +(-1)^{m-n-2}dfrac{1}{(m-1)+x^4}+(-1)^{m-n-1}dfrac{1}{m+x^4}right|\&leq left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}right|+cdots +left|dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}right|\&= dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}\&= dfrac{1}{(n+1)+x^4}-left[dfrac{1}{(n+2)+x^4}-dfrac{1}{(n+2)+x^4}right]-cdots \&;-left[dfrac{1}{(m-1)+x^4}-dfrac{1}{(m-1)+x^4}right]-dfrac{1}{m+x^4}\&leq dfrac{1}{(n+1)+x^4}.end{align}
As shown in Method I, there exists $N(epsilon)$ such that $,;forall;ngeq N(epsilon)$,
begin{align}
dfrac{1}{(n+1)+x^4}leq dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,end{align}
and we're done!
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2906111%2fshow-that-sum-infty-n-1-1n1-frac1nx4-is-uniformly-convergent%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For future readers, I present two proofs:
METHOD I: DIRICHLET'S TEST
The Dirichlet's test for uniform convergence can be found here.
Let $;epsilon>0,; xinBbb{R}$ and $ninBbb{N}$ be fixed but arbitrary. Define
begin{align}f_n(x)=(-1)^{n+1};;text{and };;g_{n}(x)=dfrac{1}{n+x^4}end{align}
Then, uniform boundedness is implied, since
begin{align}
&left|F_n(x)right|=left|sum^{n}_{m}(-1)^{m+1} right|leq 1,end{align}
The sequence ${g_n(x)}_{nin Bbb{N}}$ is decreasing, since
begin{align}
dfrac{n+x^4}{(n+1)+x^4}leq dfrac{(n+1)+x^4}{(n+1)+x^4}=1implies g_{n+1}(x)leq g_{n}(x)end{align}
By Archmidean principle, there exists $N(epsilon)$ such that $N(epsilon)>epsilon$ and
begin{align}
&left|g_n(x)-0right|=left|dfrac{1}{n+x^4}-0 right|=dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,;forall;ngeq N(epsilon)end{align}
Hence, ${g_n(x)}_{nin Bbb{N}}$ converges uniformly on $Bbb{R}$ and, by Dirichlet's test, $sum^{infty}_{n=1}f_n(x)g_n(x)$ converges uniformly on $Bbb{R}$.
METHOD II: UNIFORM CAUCHY CRITERION
Let $;epsilon>0$, $m,ninBbb{N}$ be given such that $mgeq n$ and $xinBbb{R}$ be arbitrary. Define ${f_n(x)}_{nin Bbb{N}}$ and ${g_n(x)}_{nin Bbb{N}}$ as before. Then,
begin{align}left|sum^{m}_{k=1}f_k(x)g_k(x)-sum^{n}_{k=1}f_k(x)g_k(x) right|&=left|sum^{m}_{k=n+1}f_k(x)g_k(x)right|\&=left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|end{align}
Expanding, we get
begin{align}left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|&=left|(-1)^{n+2}dfrac{1}{(n+1)+x^4}+(-1)^{n+3}dfrac{1}{(n+2)+x^4}+cdots +(-1)^{n+1}dfrac{1}{n+x^4}right|\&=left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +(-1)^{m-n-2}dfrac{1}{(m-1)+x^4}+(-1)^{m-n-1}dfrac{1}{m+x^4}right|\&leq left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}right|+cdots +left|dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}right|\&= dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}\&= dfrac{1}{(n+1)+x^4}-left[dfrac{1}{(n+2)+x^4}-dfrac{1}{(n+2)+x^4}right]-cdots \&;-left[dfrac{1}{(m-1)+x^4}-dfrac{1}{(m-1)+x^4}right]-dfrac{1}{m+x^4}\&leq dfrac{1}{(n+1)+x^4}.end{align}
As shown in Method I, there exists $N(epsilon)$ such that $,;forall;ngeq N(epsilon)$,
begin{align}
dfrac{1}{(n+1)+x^4}leq dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,end{align}
and we're done!
$endgroup$
add a comment |
$begingroup$
For future readers, I present two proofs:
METHOD I: DIRICHLET'S TEST
The Dirichlet's test for uniform convergence can be found here.
Let $;epsilon>0,; xinBbb{R}$ and $ninBbb{N}$ be fixed but arbitrary. Define
begin{align}f_n(x)=(-1)^{n+1};;text{and };;g_{n}(x)=dfrac{1}{n+x^4}end{align}
Then, uniform boundedness is implied, since
begin{align}
&left|F_n(x)right|=left|sum^{n}_{m}(-1)^{m+1} right|leq 1,end{align}
The sequence ${g_n(x)}_{nin Bbb{N}}$ is decreasing, since
begin{align}
dfrac{n+x^4}{(n+1)+x^4}leq dfrac{(n+1)+x^4}{(n+1)+x^4}=1implies g_{n+1}(x)leq g_{n}(x)end{align}
By Archmidean principle, there exists $N(epsilon)$ such that $N(epsilon)>epsilon$ and
begin{align}
&left|g_n(x)-0right|=left|dfrac{1}{n+x^4}-0 right|=dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,;forall;ngeq N(epsilon)end{align}
Hence, ${g_n(x)}_{nin Bbb{N}}$ converges uniformly on $Bbb{R}$ and, by Dirichlet's test, $sum^{infty}_{n=1}f_n(x)g_n(x)$ converges uniformly on $Bbb{R}$.
METHOD II: UNIFORM CAUCHY CRITERION
Let $;epsilon>0$, $m,ninBbb{N}$ be given such that $mgeq n$ and $xinBbb{R}$ be arbitrary. Define ${f_n(x)}_{nin Bbb{N}}$ and ${g_n(x)}_{nin Bbb{N}}$ as before. Then,
begin{align}left|sum^{m}_{k=1}f_k(x)g_k(x)-sum^{n}_{k=1}f_k(x)g_k(x) right|&=left|sum^{m}_{k=n+1}f_k(x)g_k(x)right|\&=left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|end{align}
Expanding, we get
begin{align}left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|&=left|(-1)^{n+2}dfrac{1}{(n+1)+x^4}+(-1)^{n+3}dfrac{1}{(n+2)+x^4}+cdots +(-1)^{n+1}dfrac{1}{n+x^4}right|\&=left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +(-1)^{m-n-2}dfrac{1}{(m-1)+x^4}+(-1)^{m-n-1}dfrac{1}{m+x^4}right|\&leq left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}right|+cdots +left|dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}right|\&= dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}\&= dfrac{1}{(n+1)+x^4}-left[dfrac{1}{(n+2)+x^4}-dfrac{1}{(n+2)+x^4}right]-cdots \&;-left[dfrac{1}{(m-1)+x^4}-dfrac{1}{(m-1)+x^4}right]-dfrac{1}{m+x^4}\&leq dfrac{1}{(n+1)+x^4}.end{align}
As shown in Method I, there exists $N(epsilon)$ such that $,;forall;ngeq N(epsilon)$,
begin{align}
dfrac{1}{(n+1)+x^4}leq dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,end{align}
and we're done!
$endgroup$
add a comment |
$begingroup$
For future readers, I present two proofs:
METHOD I: DIRICHLET'S TEST
The Dirichlet's test for uniform convergence can be found here.
Let $;epsilon>0,; xinBbb{R}$ and $ninBbb{N}$ be fixed but arbitrary. Define
begin{align}f_n(x)=(-1)^{n+1};;text{and };;g_{n}(x)=dfrac{1}{n+x^4}end{align}
Then, uniform boundedness is implied, since
begin{align}
&left|F_n(x)right|=left|sum^{n}_{m}(-1)^{m+1} right|leq 1,end{align}
The sequence ${g_n(x)}_{nin Bbb{N}}$ is decreasing, since
begin{align}
dfrac{n+x^4}{(n+1)+x^4}leq dfrac{(n+1)+x^4}{(n+1)+x^4}=1implies g_{n+1}(x)leq g_{n}(x)end{align}
By Archmidean principle, there exists $N(epsilon)$ such that $N(epsilon)>epsilon$ and
begin{align}
&left|g_n(x)-0right|=left|dfrac{1}{n+x^4}-0 right|=dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,;forall;ngeq N(epsilon)end{align}
Hence, ${g_n(x)}_{nin Bbb{N}}$ converges uniformly on $Bbb{R}$ and, by Dirichlet's test, $sum^{infty}_{n=1}f_n(x)g_n(x)$ converges uniformly on $Bbb{R}$.
METHOD II: UNIFORM CAUCHY CRITERION
Let $;epsilon>0$, $m,ninBbb{N}$ be given such that $mgeq n$ and $xinBbb{R}$ be arbitrary. Define ${f_n(x)}_{nin Bbb{N}}$ and ${g_n(x)}_{nin Bbb{N}}$ as before. Then,
begin{align}left|sum^{m}_{k=1}f_k(x)g_k(x)-sum^{n}_{k=1}f_k(x)g_k(x) right|&=left|sum^{m}_{k=n+1}f_k(x)g_k(x)right|\&=left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|end{align}
Expanding, we get
begin{align}left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|&=left|(-1)^{n+2}dfrac{1}{(n+1)+x^4}+(-1)^{n+3}dfrac{1}{(n+2)+x^4}+cdots +(-1)^{n+1}dfrac{1}{n+x^4}right|\&=left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +(-1)^{m-n-2}dfrac{1}{(m-1)+x^4}+(-1)^{m-n-1}dfrac{1}{m+x^4}right|\&leq left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}right|+cdots +left|dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}right|\&= dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}\&= dfrac{1}{(n+1)+x^4}-left[dfrac{1}{(n+2)+x^4}-dfrac{1}{(n+2)+x^4}right]-cdots \&;-left[dfrac{1}{(m-1)+x^4}-dfrac{1}{(m-1)+x^4}right]-dfrac{1}{m+x^4}\&leq dfrac{1}{(n+1)+x^4}.end{align}
As shown in Method I, there exists $N(epsilon)$ such that $,;forall;ngeq N(epsilon)$,
begin{align}
dfrac{1}{(n+1)+x^4}leq dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,end{align}
and we're done!
$endgroup$
For future readers, I present two proofs:
METHOD I: DIRICHLET'S TEST
The Dirichlet's test for uniform convergence can be found here.
Let $;epsilon>0,; xinBbb{R}$ and $ninBbb{N}$ be fixed but arbitrary. Define
begin{align}f_n(x)=(-1)^{n+1};;text{and };;g_{n}(x)=dfrac{1}{n+x^4}end{align}
Then, uniform boundedness is implied, since
begin{align}
&left|F_n(x)right|=left|sum^{n}_{m}(-1)^{m+1} right|leq 1,end{align}
The sequence ${g_n(x)}_{nin Bbb{N}}$ is decreasing, since
begin{align}
dfrac{n+x^4}{(n+1)+x^4}leq dfrac{(n+1)+x^4}{(n+1)+x^4}=1implies g_{n+1}(x)leq g_{n}(x)end{align}
By Archmidean principle, there exists $N(epsilon)$ such that $N(epsilon)>epsilon$ and
begin{align}
&left|g_n(x)-0right|=left|dfrac{1}{n+x^4}-0 right|=dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,;forall;ngeq N(epsilon)end{align}
Hence, ${g_n(x)}_{nin Bbb{N}}$ converges uniformly on $Bbb{R}$ and, by Dirichlet's test, $sum^{infty}_{n=1}f_n(x)g_n(x)$ converges uniformly on $Bbb{R}$.
METHOD II: UNIFORM CAUCHY CRITERION
Let $;epsilon>0$, $m,ninBbb{N}$ be given such that $mgeq n$ and $xinBbb{R}$ be arbitrary. Define ${f_n(x)}_{nin Bbb{N}}$ and ${g_n(x)}_{nin Bbb{N}}$ as before. Then,
begin{align}left|sum^{m}_{k=1}f_k(x)g_k(x)-sum^{n}_{k=1}f_k(x)g_k(x) right|&=left|sum^{m}_{k=n+1}f_k(x)g_k(x)right|\&=left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|end{align}
Expanding, we get
begin{align}left|sum^{m}_{k=n+1}(-1)^{k+1}dfrac{1}{k+x^4}right|&=left|(-1)^{n+2}dfrac{1}{(n+1)+x^4}+(-1)^{n+3}dfrac{1}{(n+2)+x^4}+cdots +(-1)^{n+1}dfrac{1}{n+x^4}right|\&=left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +(-1)^{m-n-2}dfrac{1}{(m-1)+x^4}+(-1)^{m-n-1}dfrac{1}{m+x^4}right|\&leq left|dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}right|+cdots +left|dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}right|\&= dfrac{1}{(n+1)+x^4}-dfrac{1}{(n+2)+x^4}+cdots +dfrac{1}{(m-1)+x^4}-dfrac{1}{m+x^4}\&= dfrac{1}{(n+1)+x^4}-left[dfrac{1}{(n+2)+x^4}-dfrac{1}{(n+2)+x^4}right]-cdots \&;-left[dfrac{1}{(m-1)+x^4}-dfrac{1}{(m-1)+x^4}right]-dfrac{1}{m+x^4}\&leq dfrac{1}{(n+1)+x^4}.end{align}
As shown in Method I, there exists $N(epsilon)$ such that $,;forall;ngeq N(epsilon)$,
begin{align}
dfrac{1}{(n+1)+x^4}leq dfrac{1}{n+x^4}leq dfrac{1}{n}leq dfrac{1}{N}<epsilon,end{align}
and we're done!
edited Jan 2 at 20:54
answered Jan 2 at 20:49
Omojola MichealOmojola Micheal
2,004424
2,004424
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2906111%2fshow-that-sum-infty-n-1-1n1-frac1nx4-is-uniformly-convergent%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hint: Abel-Dirichlet tests.
$endgroup$
– xbh
Sep 5 '18 at 10:34
$begingroup$
Maybe you could use the same technique to estimate the $sup$.
$endgroup$
– xbh
Sep 5 '18 at 10:36