How to solve the limit $limlimits_{xto infty} (x arctan x - frac{xpi}{2})$
$begingroup$
Next week I have a math exam. While I was doing some exercises I came across this interesting limit:
$limlimits_{xto infty} (x arctan x - frac{xpi}{2})$
After struggling a lot, I decided to calculate this limit using my calculator. The answer turns out to be $-1$. The problem is that I don't know how to calculate this limit without a calculator. I tried using L'Hôpital's rule after converting the expression to a fraction. My steps:
$limlimits_{xto infty} (x arctan x - frac{xpi}{2}) = limlimits_{xto infty} frac{2x^2arctan x - x^2pi}{2x} stackrel{(H)}{=} limlimits_{xto infty} frac{4xarctan x - frac{2}{x^2+1}-2pi x+2}{2} = limlimits_{xto infty} frac{4x^2arctan x - frac{2x}{x^2+1}-2pi x^2+2x}{2x} stackrel{(H)}{=} limlimits_{xto infty} frac{8xarctan x - frac{2x^2+6}{(x^2+1)^2}-4pi x+6}{2} = dots$
This keeps going on without an end, I also don't see where I can simplify the expression when using L'Hôpital's rule. Am I missing a step or am I using the wrong method? What method can be used instead?
calculus limits trigonometry infinity
$endgroup$
add a comment |
$begingroup$
Next week I have a math exam. While I was doing some exercises I came across this interesting limit:
$limlimits_{xto infty} (x arctan x - frac{xpi}{2})$
After struggling a lot, I decided to calculate this limit using my calculator. The answer turns out to be $-1$. The problem is that I don't know how to calculate this limit without a calculator. I tried using L'Hôpital's rule after converting the expression to a fraction. My steps:
$limlimits_{xto infty} (x arctan x - frac{xpi}{2}) = limlimits_{xto infty} frac{2x^2arctan x - x^2pi}{2x} stackrel{(H)}{=} limlimits_{xto infty} frac{4xarctan x - frac{2}{x^2+1}-2pi x+2}{2} = limlimits_{xto infty} frac{4x^2arctan x - frac{2x}{x^2+1}-2pi x^2+2x}{2x} stackrel{(H)}{=} limlimits_{xto infty} frac{8xarctan x - frac{2x^2+6}{(x^2+1)^2}-4pi x+6}{2} = dots$
This keeps going on without an end, I also don't see where I can simplify the expression when using L'Hôpital's rule. Am I missing a step or am I using the wrong method? What method can be used instead?
calculus limits trigonometry infinity
$endgroup$
add a comment |
$begingroup$
Next week I have a math exam. While I was doing some exercises I came across this interesting limit:
$limlimits_{xto infty} (x arctan x - frac{xpi}{2})$
After struggling a lot, I decided to calculate this limit using my calculator. The answer turns out to be $-1$. The problem is that I don't know how to calculate this limit without a calculator. I tried using L'Hôpital's rule after converting the expression to a fraction. My steps:
$limlimits_{xto infty} (x arctan x - frac{xpi}{2}) = limlimits_{xto infty} frac{2x^2arctan x - x^2pi}{2x} stackrel{(H)}{=} limlimits_{xto infty} frac{4xarctan x - frac{2}{x^2+1}-2pi x+2}{2} = limlimits_{xto infty} frac{4x^2arctan x - frac{2x}{x^2+1}-2pi x^2+2x}{2x} stackrel{(H)}{=} limlimits_{xto infty} frac{8xarctan x - frac{2x^2+6}{(x^2+1)^2}-4pi x+6}{2} = dots$
This keeps going on without an end, I also don't see where I can simplify the expression when using L'Hôpital's rule. Am I missing a step or am I using the wrong method? What method can be used instead?
calculus limits trigonometry infinity
$endgroup$
Next week I have a math exam. While I was doing some exercises I came across this interesting limit:
$limlimits_{xto infty} (x arctan x - frac{xpi}{2})$
After struggling a lot, I decided to calculate this limit using my calculator. The answer turns out to be $-1$. The problem is that I don't know how to calculate this limit without a calculator. I tried using L'Hôpital's rule after converting the expression to a fraction. My steps:
$limlimits_{xto infty} (x arctan x - frac{xpi}{2}) = limlimits_{xto infty} frac{2x^2arctan x - x^2pi}{2x} stackrel{(H)}{=} limlimits_{xto infty} frac{4xarctan x - frac{2}{x^2+1}-2pi x+2}{2} = limlimits_{xto infty} frac{4x^2arctan x - frac{2x}{x^2+1}-2pi x^2+2x}{2x} stackrel{(H)}{=} limlimits_{xto infty} frac{8xarctan x - frac{2x^2+6}{(x^2+1)^2}-4pi x+6}{2} = dots$
This keeps going on without an end, I also don't see where I can simplify the expression when using L'Hôpital's rule. Am I missing a step or am I using the wrong method? What method can be used instead?
calculus limits trigonometry infinity
calculus limits trigonometry infinity
asked Jan 2 at 21:55
MichielvkMichielvk
1065
1065
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Observe
begin{align}
lim_{xrightarrow infty} xarctan x-xfrac{pi}{2}=lim_{xrightarrowinfty}frac{arctan x-frac{pi}{2}}{x^{-1}} = lim_{xrightarrow infty} frac{frac{1}{1+x^2}}{-x^{-2}}=-1
end{align}
$endgroup$
add a comment |
$begingroup$
If you know that $lim_{xto+infty}arctan x = pi/2$, then factoring out $x$ in your original limit you would get a $+infty cdot 0$. You want to apply L'Hospital's Rule. Motivated by this, we do $$lim_{xto +infty} left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} xleft(arctan x - frac{pi}{2}right) = lim_{x to infty} frac{arctan x - (pi/2)}{1/x}.$$Now apply L'Hospital to get $$lim_{x to +infty}left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} frac{1/(1+x^2)}{-1/x^2} = -lim_{x to +infty}frac{x^2}{1+x^2} = -1.$$
$endgroup$
add a comment |
$begingroup$
You can do the substitution $x=1/t$, recalling that, for $t>0$,
$$
arctanfrac{1}{t}=frac{pi}{2}-arctan t
$$
Thus the limit becomes
$$
lim_{tto0^+}left(frac{1}{t}frac{pi}{2}-frac{1}{t}arctan t-frac{1}{t}frac{pi}{2}right)=lim_{tto0^+}-frac{arctan t}{t}
$$
Alternatively, substitute $u=arctan x$, so $x=tan u$ and the limit becomes
$$
lim_{utopi/2^-}(u-pi/2)tan u=lim_{utopi/2^-}frac{u-pi/2}{cot u}
$$
This is the reciprocal of the derivative at $pi/2$ of the cotangent.
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060021%2fhow-to-solve-the-limit-lim-limits-x-to-infty-x-arctan-x-fracx-pi2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Observe
begin{align}
lim_{xrightarrow infty} xarctan x-xfrac{pi}{2}=lim_{xrightarrowinfty}frac{arctan x-frac{pi}{2}}{x^{-1}} = lim_{xrightarrow infty} frac{frac{1}{1+x^2}}{-x^{-2}}=-1
end{align}
$endgroup$
add a comment |
$begingroup$
Observe
begin{align}
lim_{xrightarrow infty} xarctan x-xfrac{pi}{2}=lim_{xrightarrowinfty}frac{arctan x-frac{pi}{2}}{x^{-1}} = lim_{xrightarrow infty} frac{frac{1}{1+x^2}}{-x^{-2}}=-1
end{align}
$endgroup$
add a comment |
$begingroup$
Observe
begin{align}
lim_{xrightarrow infty} xarctan x-xfrac{pi}{2}=lim_{xrightarrowinfty}frac{arctan x-frac{pi}{2}}{x^{-1}} = lim_{xrightarrow infty} frac{frac{1}{1+x^2}}{-x^{-2}}=-1
end{align}
$endgroup$
Observe
begin{align}
lim_{xrightarrow infty} xarctan x-xfrac{pi}{2}=lim_{xrightarrowinfty}frac{arctan x-frac{pi}{2}}{x^{-1}} = lim_{xrightarrow infty} frac{frac{1}{1+x^2}}{-x^{-2}}=-1
end{align}
answered Jan 2 at 22:01
Jacky ChongJacky Chong
19.3k21129
19.3k21129
add a comment |
add a comment |
$begingroup$
If you know that $lim_{xto+infty}arctan x = pi/2$, then factoring out $x$ in your original limit you would get a $+infty cdot 0$. You want to apply L'Hospital's Rule. Motivated by this, we do $$lim_{xto +infty} left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} xleft(arctan x - frac{pi}{2}right) = lim_{x to infty} frac{arctan x - (pi/2)}{1/x}.$$Now apply L'Hospital to get $$lim_{x to +infty}left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} frac{1/(1+x^2)}{-1/x^2} = -lim_{x to +infty}frac{x^2}{1+x^2} = -1.$$
$endgroup$
add a comment |
$begingroup$
If you know that $lim_{xto+infty}arctan x = pi/2$, then factoring out $x$ in your original limit you would get a $+infty cdot 0$. You want to apply L'Hospital's Rule. Motivated by this, we do $$lim_{xto +infty} left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} xleft(arctan x - frac{pi}{2}right) = lim_{x to infty} frac{arctan x - (pi/2)}{1/x}.$$Now apply L'Hospital to get $$lim_{x to +infty}left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} frac{1/(1+x^2)}{-1/x^2} = -lim_{x to +infty}frac{x^2}{1+x^2} = -1.$$
$endgroup$
add a comment |
$begingroup$
If you know that $lim_{xto+infty}arctan x = pi/2$, then factoring out $x$ in your original limit you would get a $+infty cdot 0$. You want to apply L'Hospital's Rule. Motivated by this, we do $$lim_{xto +infty} left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} xleft(arctan x - frac{pi}{2}right) = lim_{x to infty} frac{arctan x - (pi/2)}{1/x}.$$Now apply L'Hospital to get $$lim_{x to +infty}left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} frac{1/(1+x^2)}{-1/x^2} = -lim_{x to +infty}frac{x^2}{1+x^2} = -1.$$
$endgroup$
If you know that $lim_{xto+infty}arctan x = pi/2$, then factoring out $x$ in your original limit you would get a $+infty cdot 0$. You want to apply L'Hospital's Rule. Motivated by this, we do $$lim_{xto +infty} left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} xleft(arctan x - frac{pi}{2}right) = lim_{x to infty} frac{arctan x - (pi/2)}{1/x}.$$Now apply L'Hospital to get $$lim_{x to +infty}left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} frac{1/(1+x^2)}{-1/x^2} = -lim_{x to +infty}frac{x^2}{1+x^2} = -1.$$
answered Jan 2 at 22:03
Ivo TerekIvo Terek
46.6k954146
46.6k954146
add a comment |
add a comment |
$begingroup$
You can do the substitution $x=1/t$, recalling that, for $t>0$,
$$
arctanfrac{1}{t}=frac{pi}{2}-arctan t
$$
Thus the limit becomes
$$
lim_{tto0^+}left(frac{1}{t}frac{pi}{2}-frac{1}{t}arctan t-frac{1}{t}frac{pi}{2}right)=lim_{tto0^+}-frac{arctan t}{t}
$$
Alternatively, substitute $u=arctan x$, so $x=tan u$ and the limit becomes
$$
lim_{utopi/2^-}(u-pi/2)tan u=lim_{utopi/2^-}frac{u-pi/2}{cot u}
$$
This is the reciprocal of the derivative at $pi/2$ of the cotangent.
$endgroup$
add a comment |
$begingroup$
You can do the substitution $x=1/t$, recalling that, for $t>0$,
$$
arctanfrac{1}{t}=frac{pi}{2}-arctan t
$$
Thus the limit becomes
$$
lim_{tto0^+}left(frac{1}{t}frac{pi}{2}-frac{1}{t}arctan t-frac{1}{t}frac{pi}{2}right)=lim_{tto0^+}-frac{arctan t}{t}
$$
Alternatively, substitute $u=arctan x$, so $x=tan u$ and the limit becomes
$$
lim_{utopi/2^-}(u-pi/2)tan u=lim_{utopi/2^-}frac{u-pi/2}{cot u}
$$
This is the reciprocal of the derivative at $pi/2$ of the cotangent.
$endgroup$
add a comment |
$begingroup$
You can do the substitution $x=1/t$, recalling that, for $t>0$,
$$
arctanfrac{1}{t}=frac{pi}{2}-arctan t
$$
Thus the limit becomes
$$
lim_{tto0^+}left(frac{1}{t}frac{pi}{2}-frac{1}{t}arctan t-frac{1}{t}frac{pi}{2}right)=lim_{tto0^+}-frac{arctan t}{t}
$$
Alternatively, substitute $u=arctan x$, so $x=tan u$ and the limit becomes
$$
lim_{utopi/2^-}(u-pi/2)tan u=lim_{utopi/2^-}frac{u-pi/2}{cot u}
$$
This is the reciprocal of the derivative at $pi/2$ of the cotangent.
$endgroup$
You can do the substitution $x=1/t$, recalling that, for $t>0$,
$$
arctanfrac{1}{t}=frac{pi}{2}-arctan t
$$
Thus the limit becomes
$$
lim_{tto0^+}left(frac{1}{t}frac{pi}{2}-frac{1}{t}arctan t-frac{1}{t}frac{pi}{2}right)=lim_{tto0^+}-frac{arctan t}{t}
$$
Alternatively, substitute $u=arctan x$, so $x=tan u$ and the limit becomes
$$
lim_{utopi/2^-}(u-pi/2)tan u=lim_{utopi/2^-}frac{u-pi/2}{cot u}
$$
This is the reciprocal of the derivative at $pi/2$ of the cotangent.
answered Jan 2 at 22:41
egregegreg
185k1486206
185k1486206
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060021%2fhow-to-solve-the-limit-lim-limits-x-to-infty-x-arctan-x-fracx-pi2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown