Physical meaning (and name) of dyadic of second order vector derivative $nabla^{(2)}$ and vector
$begingroup$
I have a vector $mathbf{v}=begin{pmatrix} v_1 & v_2 & v_3 end{pmatrix}^top$ and the matrix $G$. $$G = begin{pmatrix} partial_1^2v_1 & partial_2^2v_1 & partial_3^2v_1 \ partial_1^2v_2 & partial_2^2v_2 & partial_3^2v_2 \ partial_1^2v_3 & partial_2^2v_3 & partial_3^2v_3end{pmatrix}$$
$G$ is not the same as the gradient of $mathbf{v}$ $$nablamathbf{v}=begin{pmatrix} partial_1v_1 & partial_2v_1 & partial_3v_1 \ partial_1v_2 & partial_2v_2 & partial_3v_2 \ partial_1v_3 & partial_2v_3 & partial_3v_3end{pmatrix}$$
nor is it the Laplacian of $mathbf{v}$. $$nabla^2mathbf{v}=Deltamathbf{v}=begin{pmatrix} partial_1^2v_1 + partial_2^2v_1 + partial_3^2v_1\ partial_1^2v_2 + partial_2^2v_2 + partial_3^2v_2\partial_1^2v_3 + partial_2^2v_3 + partial_3^2v_3end{pmatrix}$$
However, $G$ is equivalent to $G^*{^top}$ where $G^*$ is the dyadic between a second order vector derivative $nabla^{(2)}$ and the vector $mathbf{v}$. $$G^*=nabla^{(2)}otimesmathbf{v}=nabla^{(2)}mathbf{v}^top=begin{pmatrix}partial_1^2\partial_2^2\partial_3^2end{pmatrix}begin{pmatrix}v_1 & v_2 & v_3end{pmatrix}=begin{pmatrix}partial_1^2v_1 & partial_1^2v_2 & partial_1^2v_3\partial_2^2v_1 & partial_2^2v_2 & partial_2^2v_3\partial_3^2v_1 & partial_3^2v_2 & partial_3^2v_3end{pmatrix}=G^top$$
Do either $G$ or $G^*$ as I have defined them have a physical interpretation or particular name besides the long and drawn out "dyadic of second order vector derivative and a vector"? I also am unsure if $nabla^{(2)}$ has a name or not so I have used my own notation.
vectors tensor-products
$endgroup$
add a comment |
$begingroup$
I have a vector $mathbf{v}=begin{pmatrix} v_1 & v_2 & v_3 end{pmatrix}^top$ and the matrix $G$. $$G = begin{pmatrix} partial_1^2v_1 & partial_2^2v_1 & partial_3^2v_1 \ partial_1^2v_2 & partial_2^2v_2 & partial_3^2v_2 \ partial_1^2v_3 & partial_2^2v_3 & partial_3^2v_3end{pmatrix}$$
$G$ is not the same as the gradient of $mathbf{v}$ $$nablamathbf{v}=begin{pmatrix} partial_1v_1 & partial_2v_1 & partial_3v_1 \ partial_1v_2 & partial_2v_2 & partial_3v_2 \ partial_1v_3 & partial_2v_3 & partial_3v_3end{pmatrix}$$
nor is it the Laplacian of $mathbf{v}$. $$nabla^2mathbf{v}=Deltamathbf{v}=begin{pmatrix} partial_1^2v_1 + partial_2^2v_1 + partial_3^2v_1\ partial_1^2v_2 + partial_2^2v_2 + partial_3^2v_2\partial_1^2v_3 + partial_2^2v_3 + partial_3^2v_3end{pmatrix}$$
However, $G$ is equivalent to $G^*{^top}$ where $G^*$ is the dyadic between a second order vector derivative $nabla^{(2)}$ and the vector $mathbf{v}$. $$G^*=nabla^{(2)}otimesmathbf{v}=nabla^{(2)}mathbf{v}^top=begin{pmatrix}partial_1^2\partial_2^2\partial_3^2end{pmatrix}begin{pmatrix}v_1 & v_2 & v_3end{pmatrix}=begin{pmatrix}partial_1^2v_1 & partial_1^2v_2 & partial_1^2v_3\partial_2^2v_1 & partial_2^2v_2 & partial_2^2v_3\partial_3^2v_1 & partial_3^2v_2 & partial_3^2v_3end{pmatrix}=G^top$$
Do either $G$ or $G^*$ as I have defined them have a physical interpretation or particular name besides the long and drawn out "dyadic of second order vector derivative and a vector"? I also am unsure if $nabla^{(2)}$ has a name or not so I have used my own notation.
vectors tensor-products
$endgroup$
add a comment |
$begingroup$
I have a vector $mathbf{v}=begin{pmatrix} v_1 & v_2 & v_3 end{pmatrix}^top$ and the matrix $G$. $$G = begin{pmatrix} partial_1^2v_1 & partial_2^2v_1 & partial_3^2v_1 \ partial_1^2v_2 & partial_2^2v_2 & partial_3^2v_2 \ partial_1^2v_3 & partial_2^2v_3 & partial_3^2v_3end{pmatrix}$$
$G$ is not the same as the gradient of $mathbf{v}$ $$nablamathbf{v}=begin{pmatrix} partial_1v_1 & partial_2v_1 & partial_3v_1 \ partial_1v_2 & partial_2v_2 & partial_3v_2 \ partial_1v_3 & partial_2v_3 & partial_3v_3end{pmatrix}$$
nor is it the Laplacian of $mathbf{v}$. $$nabla^2mathbf{v}=Deltamathbf{v}=begin{pmatrix} partial_1^2v_1 + partial_2^2v_1 + partial_3^2v_1\ partial_1^2v_2 + partial_2^2v_2 + partial_3^2v_2\partial_1^2v_3 + partial_2^2v_3 + partial_3^2v_3end{pmatrix}$$
However, $G$ is equivalent to $G^*{^top}$ where $G^*$ is the dyadic between a second order vector derivative $nabla^{(2)}$ and the vector $mathbf{v}$. $$G^*=nabla^{(2)}otimesmathbf{v}=nabla^{(2)}mathbf{v}^top=begin{pmatrix}partial_1^2\partial_2^2\partial_3^2end{pmatrix}begin{pmatrix}v_1 & v_2 & v_3end{pmatrix}=begin{pmatrix}partial_1^2v_1 & partial_1^2v_2 & partial_1^2v_3\partial_2^2v_1 & partial_2^2v_2 & partial_2^2v_3\partial_3^2v_1 & partial_3^2v_2 & partial_3^2v_3end{pmatrix}=G^top$$
Do either $G$ or $G^*$ as I have defined them have a physical interpretation or particular name besides the long and drawn out "dyadic of second order vector derivative and a vector"? I also am unsure if $nabla^{(2)}$ has a name or not so I have used my own notation.
vectors tensor-products
$endgroup$
I have a vector $mathbf{v}=begin{pmatrix} v_1 & v_2 & v_3 end{pmatrix}^top$ and the matrix $G$. $$G = begin{pmatrix} partial_1^2v_1 & partial_2^2v_1 & partial_3^2v_1 \ partial_1^2v_2 & partial_2^2v_2 & partial_3^2v_2 \ partial_1^2v_3 & partial_2^2v_3 & partial_3^2v_3end{pmatrix}$$
$G$ is not the same as the gradient of $mathbf{v}$ $$nablamathbf{v}=begin{pmatrix} partial_1v_1 & partial_2v_1 & partial_3v_1 \ partial_1v_2 & partial_2v_2 & partial_3v_2 \ partial_1v_3 & partial_2v_3 & partial_3v_3end{pmatrix}$$
nor is it the Laplacian of $mathbf{v}$. $$nabla^2mathbf{v}=Deltamathbf{v}=begin{pmatrix} partial_1^2v_1 + partial_2^2v_1 + partial_3^2v_1\ partial_1^2v_2 + partial_2^2v_2 + partial_3^2v_2\partial_1^2v_3 + partial_2^2v_3 + partial_3^2v_3end{pmatrix}$$
However, $G$ is equivalent to $G^*{^top}$ where $G^*$ is the dyadic between a second order vector derivative $nabla^{(2)}$ and the vector $mathbf{v}$. $$G^*=nabla^{(2)}otimesmathbf{v}=nabla^{(2)}mathbf{v}^top=begin{pmatrix}partial_1^2\partial_2^2\partial_3^2end{pmatrix}begin{pmatrix}v_1 & v_2 & v_3end{pmatrix}=begin{pmatrix}partial_1^2v_1 & partial_1^2v_2 & partial_1^2v_3\partial_2^2v_1 & partial_2^2v_2 & partial_2^2v_3\partial_3^2v_1 & partial_3^2v_2 & partial_3^2v_3end{pmatrix}=G^top$$
Do either $G$ or $G^*$ as I have defined them have a physical interpretation or particular name besides the long and drawn out "dyadic of second order vector derivative and a vector"? I also am unsure if $nabla^{(2)}$ has a name or not so I have used my own notation.
vectors tensor-products
vectors tensor-products
asked Dec 20 '18 at 16:57
WnGatRC456WnGatRC456
10810
10810
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047747%2fphysical-meaning-and-name-of-dyadic-of-second-order-vector-derivative-nabla%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047747%2fphysical-meaning-and-name-of-dyadic-of-second-order-vector-derivative-nabla%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown