distribution of $sum_{i=1}^n (X_i-X_{n+i})^2$ where $X_1,X_2,dots,X_{2n}$ are iid $N(mu,sigma^2)$












0












$begingroup$


Suppose $X_1,X_2,dots,X_{2n}$ are iid $mathcal N(mu,sigma^2)$ random variables.



How can I find the distribution of $displaystylesum_{i=1}^n (X_i-X_{n+i})^2$?

Should I approach it by taking $Z=dfrac{X-mu}{sigma}$ where $Zsim mathcal N(0,1)$?



Any hint will also help me.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Suppose $X_1,X_2,dots,X_{2n}$ are iid $mathcal N(mu,sigma^2)$ random variables.



    How can I find the distribution of $displaystylesum_{i=1}^n (X_i-X_{n+i})^2$?

    Should I approach it by taking $Z=dfrac{X-mu}{sigma}$ where $Zsim mathcal N(0,1)$?



    Any hint will also help me.










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Suppose $X_1,X_2,dots,X_{2n}$ are iid $mathcal N(mu,sigma^2)$ random variables.



      How can I find the distribution of $displaystylesum_{i=1}^n (X_i-X_{n+i})^2$?

      Should I approach it by taking $Z=dfrac{X-mu}{sigma}$ where $Zsim mathcal N(0,1)$?



      Any hint will also help me.










      share|cite|improve this question











      $endgroup$




      Suppose $X_1,X_2,dots,X_{2n}$ are iid $mathcal N(mu,sigma^2)$ random variables.



      How can I find the distribution of $displaystylesum_{i=1}^n (X_i-X_{n+i})^2$?

      Should I approach it by taking $Z=dfrac{X-mu}{sigma}$ where $Zsim mathcal N(0,1)$?



      Any hint will also help me.







      statistics sampling-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 20 '18 at 15:57









      user10354138

      7,4322925




      7,4322925










      asked Dec 20 '18 at 15:19









      Supriyo BanerjeeSupriyo Banerjee

      1176




      1176






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Note that $X_i-X_{n+i}$ is an independent sequence. Further note that $$X_i-X_{n+i} sim mathcal{N}(0,2sigma^2),$$
          hence $$left(frac{X_i-X_{n+i}}{sqrt2sigma}right)^2simchi^2_{(1)},$$which is also an independent sequence. Therefore $$frac{1}{2sigma^2}sum_{i=1}^n (X_i-X_{n+i})^2simchi^2_{(n)}.$$
          Now use this page to see how a scaled chi-dist is related to a Gamma distribution.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047649%2fdistribution-of-sum-i-1n-x-i-x-ni2-where-x-1-x-2-dots-x-2n-are%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Note that $X_i-X_{n+i}$ is an independent sequence. Further note that $$X_i-X_{n+i} sim mathcal{N}(0,2sigma^2),$$
            hence $$left(frac{X_i-X_{n+i}}{sqrt2sigma}right)^2simchi^2_{(1)},$$which is also an independent sequence. Therefore $$frac{1}{2sigma^2}sum_{i=1}^n (X_i-X_{n+i})^2simchi^2_{(n)}.$$
            Now use this page to see how a scaled chi-dist is related to a Gamma distribution.






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              Note that $X_i-X_{n+i}$ is an independent sequence. Further note that $$X_i-X_{n+i} sim mathcal{N}(0,2sigma^2),$$
              hence $$left(frac{X_i-X_{n+i}}{sqrt2sigma}right)^2simchi^2_{(1)},$$which is also an independent sequence. Therefore $$frac{1}{2sigma^2}sum_{i=1}^n (X_i-X_{n+i})^2simchi^2_{(n)}.$$
              Now use this page to see how a scaled chi-dist is related to a Gamma distribution.






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                Note that $X_i-X_{n+i}$ is an independent sequence. Further note that $$X_i-X_{n+i} sim mathcal{N}(0,2sigma^2),$$
                hence $$left(frac{X_i-X_{n+i}}{sqrt2sigma}right)^2simchi^2_{(1)},$$which is also an independent sequence. Therefore $$frac{1}{2sigma^2}sum_{i=1}^n (X_i-X_{n+i})^2simchi^2_{(n)}.$$
                Now use this page to see how a scaled chi-dist is related to a Gamma distribution.






                share|cite|improve this answer









                $endgroup$



                Note that $X_i-X_{n+i}$ is an independent sequence. Further note that $$X_i-X_{n+i} sim mathcal{N}(0,2sigma^2),$$
                hence $$left(frac{X_i-X_{n+i}}{sqrt2sigma}right)^2simchi^2_{(1)},$$which is also an independent sequence. Therefore $$frac{1}{2sigma^2}sum_{i=1}^n (X_i-X_{n+i})^2simchi^2_{(n)}.$$
                Now use this page to see how a scaled chi-dist is related to a Gamma distribution.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 20 '18 at 15:52









                Math-funMath-fun

                7,1531527




                7,1531527






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047649%2fdistribution-of-sum-i-1n-x-i-x-ni2-where-x-1-x-2-dots-x-2n-are%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Probability when a professor distributes a quiz and homework assignment to a class of n students.

                    Aardman Animations

                    Are they similar matrix