Functional Derivative for Specific Question
$begingroup$
Can you help me understanding how author got to equation 1.12, and what is phi(X)
function. (https://i.stack.imgur.com/16LOQ.jpg)
$$J[f] = int [f(y)]^p phi{(y)} d{y}$$
$$frac{delta{J[f]}}{delta{f(x)}} = lim_{epsilonto0}frac{[int [f(y) + epsilondelta{(y-x)}]^p phi{(y)}d{y} - int[f(y)]^p phi{(y)}dy ]}{epsilon}
$$
$$frac{delta{J[f]}}{delta{f(x)}} = p[f(x)]^{p-1} phi(x) spacespacespace (1.12)$$
calculus-of-variations quantum-field-theory functional-calculus
$endgroup$
add a comment |
$begingroup$
Can you help me understanding how author got to equation 1.12, and what is phi(X)
function. (https://i.stack.imgur.com/16LOQ.jpg)
$$J[f] = int [f(y)]^p phi{(y)} d{y}$$
$$frac{delta{J[f]}}{delta{f(x)}} = lim_{epsilonto0}frac{[int [f(y) + epsilondelta{(y-x)}]^p phi{(y)}d{y} - int[f(y)]^p phi{(y)}dy ]}{epsilon}
$$
$$frac{delta{J[f]}}{delta{f(x)}} = p[f(x)]^{p-1} phi(x) spacespacespace (1.12)$$
calculus-of-variations quantum-field-theory functional-calculus
$endgroup$
1
$begingroup$
It is customary on Math.Stackexchange to make questions as self-contained as possible. Please write the equations in the body of your question using MathJax.
$endgroup$
– KReiser
Dec 25 '18 at 7:17
$begingroup$
Thanks for the information.
$endgroup$
– SAK
Dec 25 '18 at 7:32
add a comment |
$begingroup$
Can you help me understanding how author got to equation 1.12, and what is phi(X)
function. (https://i.stack.imgur.com/16LOQ.jpg)
$$J[f] = int [f(y)]^p phi{(y)} d{y}$$
$$frac{delta{J[f]}}{delta{f(x)}} = lim_{epsilonto0}frac{[int [f(y) + epsilondelta{(y-x)}]^p phi{(y)}d{y} - int[f(y)]^p phi{(y)}dy ]}{epsilon}
$$
$$frac{delta{J[f]}}{delta{f(x)}} = p[f(x)]^{p-1} phi(x) spacespacespace (1.12)$$
calculus-of-variations quantum-field-theory functional-calculus
$endgroup$
Can you help me understanding how author got to equation 1.12, and what is phi(X)
function. (https://i.stack.imgur.com/16LOQ.jpg)
$$J[f] = int [f(y)]^p phi{(y)} d{y}$$
$$frac{delta{J[f]}}{delta{f(x)}} = lim_{epsilonto0}frac{[int [f(y) + epsilondelta{(y-x)}]^p phi{(y)}d{y} - int[f(y)]^p phi{(y)}dy ]}{epsilon}
$$
$$frac{delta{J[f]}}{delta{f(x)}} = p[f(x)]^{p-1} phi(x) spacespacespace (1.12)$$
calculus-of-variations quantum-field-theory functional-calculus
calculus-of-variations quantum-field-theory functional-calculus
edited Mar 4 at 7:22
Andrews
1,2691421
1,2691421
asked Dec 25 '18 at 7:14
SAKSAK
83
83
1
$begingroup$
It is customary on Math.Stackexchange to make questions as self-contained as possible. Please write the equations in the body of your question using MathJax.
$endgroup$
– KReiser
Dec 25 '18 at 7:17
$begingroup$
Thanks for the information.
$endgroup$
– SAK
Dec 25 '18 at 7:32
add a comment |
1
$begingroup$
It is customary on Math.Stackexchange to make questions as self-contained as possible. Please write the equations in the body of your question using MathJax.
$endgroup$
– KReiser
Dec 25 '18 at 7:17
$begingroup$
Thanks for the information.
$endgroup$
– SAK
Dec 25 '18 at 7:32
1
1
$begingroup$
It is customary on Math.Stackexchange to make questions as self-contained as possible. Please write the equations in the body of your question using MathJax.
$endgroup$
– KReiser
Dec 25 '18 at 7:17
$begingroup$
It is customary on Math.Stackexchange to make questions as self-contained as possible. Please write the equations in the body of your question using MathJax.
$endgroup$
– KReiser
Dec 25 '18 at 7:17
$begingroup$
Thanks for the information.
$endgroup$
– SAK
Dec 25 '18 at 7:32
$begingroup$
Thanks for the information.
$endgroup$
– SAK
Dec 25 '18 at 7:32
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Use the generalized binomial theorem:begin{align}
frac{delta{J[f]}}{delta{f(x)}} &= lim_{epsilonto0}frac1varepsilonleft(int [f(y) + epsilondelta{(y-x)}]^p phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
&= lim_{epsilonto0}frac1varepsilonleft(int sum_{k=0}^infty{p choose k} [varepsilon delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
&= lim_{epsilonto0}left[pint delta(y-x)[f(y)]^{p-1}phi(y),dy + sum_{k=2}^infty{p choose k} varepsilon^{k-1} int [delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dyright]\
&= pint delta(y-x)[f(y)]^{p-1}phi(y),dy\
&= p[f(x)]^{p-1}phi(x)
end{align}
$phi$ is just an arbitrary function used to define the functional $J$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051914%2ffunctional-derivative-for-specific-question%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Use the generalized binomial theorem:begin{align}
frac{delta{J[f]}}{delta{f(x)}} &= lim_{epsilonto0}frac1varepsilonleft(int [f(y) + epsilondelta{(y-x)}]^p phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
&= lim_{epsilonto0}frac1varepsilonleft(int sum_{k=0}^infty{p choose k} [varepsilon delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
&= lim_{epsilonto0}left[pint delta(y-x)[f(y)]^{p-1}phi(y),dy + sum_{k=2}^infty{p choose k} varepsilon^{k-1} int [delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dyright]\
&= pint delta(y-x)[f(y)]^{p-1}phi(y),dy\
&= p[f(x)]^{p-1}phi(x)
end{align}
$phi$ is just an arbitrary function used to define the functional $J$.
$endgroup$
add a comment |
$begingroup$
Use the generalized binomial theorem:begin{align}
frac{delta{J[f]}}{delta{f(x)}} &= lim_{epsilonto0}frac1varepsilonleft(int [f(y) + epsilondelta{(y-x)}]^p phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
&= lim_{epsilonto0}frac1varepsilonleft(int sum_{k=0}^infty{p choose k} [varepsilon delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
&= lim_{epsilonto0}left[pint delta(y-x)[f(y)]^{p-1}phi(y),dy + sum_{k=2}^infty{p choose k} varepsilon^{k-1} int [delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dyright]\
&= pint delta(y-x)[f(y)]^{p-1}phi(y),dy\
&= p[f(x)]^{p-1}phi(x)
end{align}
$phi$ is just an arbitrary function used to define the functional $J$.
$endgroup$
add a comment |
$begingroup$
Use the generalized binomial theorem:begin{align}
frac{delta{J[f]}}{delta{f(x)}} &= lim_{epsilonto0}frac1varepsilonleft(int [f(y) + epsilondelta{(y-x)}]^p phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
&= lim_{epsilonto0}frac1varepsilonleft(int sum_{k=0}^infty{p choose k} [varepsilon delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
&= lim_{epsilonto0}left[pint delta(y-x)[f(y)]^{p-1}phi(y),dy + sum_{k=2}^infty{p choose k} varepsilon^{k-1} int [delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dyright]\
&= pint delta(y-x)[f(y)]^{p-1}phi(y),dy\
&= p[f(x)]^{p-1}phi(x)
end{align}
$phi$ is just an arbitrary function used to define the functional $J$.
$endgroup$
Use the generalized binomial theorem:begin{align}
frac{delta{J[f]}}{delta{f(x)}} &= lim_{epsilonto0}frac1varepsilonleft(int [f(y) + epsilondelta{(y-x)}]^p phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
&= lim_{epsilonto0}frac1varepsilonleft(int sum_{k=0}^infty{p choose k} [varepsilon delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
&= lim_{epsilonto0}left[pint delta(y-x)[f(y)]^{p-1}phi(y),dy + sum_{k=2}^infty{p choose k} varepsilon^{k-1} int [delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dyright]\
&= pint delta(y-x)[f(y)]^{p-1}phi(y),dy\
&= p[f(x)]^{p-1}phi(x)
end{align}
$phi$ is just an arbitrary function used to define the functional $J$.
answered Dec 25 '18 at 12:05
mechanodroidmechanodroid
28.6k62548
28.6k62548
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051914%2ffunctional-derivative-for-specific-question%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
It is customary on Math.Stackexchange to make questions as self-contained as possible. Please write the equations in the body of your question using MathJax.
$endgroup$
– KReiser
Dec 25 '18 at 7:17
$begingroup$
Thanks for the information.
$endgroup$
– SAK
Dec 25 '18 at 7:32