Does $f_t(x) to mbox{sgn}(x)$ as $ t to 0$ imply $|f_t(x) - mbox{sgn}(x)|< t$?












0












$begingroup$



Define a function $f: mathbb{R} to mathbb{R}$ as
$$begin{equation}
f_t(x) =
begin{cases}
-1 & text{if}; ,x<-t \
sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\
1 & text{if};, x>t
end{cases}
end{equation} $$

Then $f(x)$ converges pointwise to $mbox{sgn}(x)$ as $t to 0$.
I'm wondering if something stronger can be proven, can we say $|f_t(x) - mbox{sgn}(x)|< t$ ?











share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Do you mean begin{equation} f_t(x) = begin{cases} -1 & text{if}; ,x<-t \ sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\ 1 & text{if};, x>t end{cases}? end{equation} I.e., $x<-t$ in the first case.
    $endgroup$
    – Jens Schwaiger
    Dec 25 '18 at 8:14












  • $begingroup$
    @JensSchwaiger Yes, thank you !
    $endgroup$
    – Goal123
    Dec 25 '18 at 10:28
















0












$begingroup$



Define a function $f: mathbb{R} to mathbb{R}$ as
$$begin{equation}
f_t(x) =
begin{cases}
-1 & text{if}; ,x<-t \
sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\
1 & text{if};, x>t
end{cases}
end{equation} $$

Then $f(x)$ converges pointwise to $mbox{sgn}(x)$ as $t to 0$.
I'm wondering if something stronger can be proven, can we say $|f_t(x) - mbox{sgn}(x)|< t$ ?











share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Do you mean begin{equation} f_t(x) = begin{cases} -1 & text{if}; ,x<-t \ sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\ 1 & text{if};, x>t end{cases}? end{equation} I.e., $x<-t$ in the first case.
    $endgroup$
    – Jens Schwaiger
    Dec 25 '18 at 8:14












  • $begingroup$
    @JensSchwaiger Yes, thank you !
    $endgroup$
    – Goal123
    Dec 25 '18 at 10:28














0












0








0





$begingroup$



Define a function $f: mathbb{R} to mathbb{R}$ as
$$begin{equation}
f_t(x) =
begin{cases}
-1 & text{if}; ,x<-t \
sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\
1 & text{if};, x>t
end{cases}
end{equation} $$

Then $f(x)$ converges pointwise to $mbox{sgn}(x)$ as $t to 0$.
I'm wondering if something stronger can be proven, can we say $|f_t(x) - mbox{sgn}(x)|< t$ ?











share|cite|improve this question











$endgroup$





Define a function $f: mathbb{R} to mathbb{R}$ as
$$begin{equation}
f_t(x) =
begin{cases}
-1 & text{if}; ,x<-t \
sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\
1 & text{if};, x>t
end{cases}
end{equation} $$

Then $f(x)$ converges pointwise to $mbox{sgn}(x)$ as $t to 0$.
I'm wondering if something stronger can be proven, can we say $|f_t(x) - mbox{sgn}(x)|< t$ ?








real-analysis analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 25 '18 at 10:27







Goal123

















asked Dec 25 '18 at 7:15









Goal123Goal123

505212




505212








  • 1




    $begingroup$
    Do you mean begin{equation} f_t(x) = begin{cases} -1 & text{if}; ,x<-t \ sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\ 1 & text{if};, x>t end{cases}? end{equation} I.e., $x<-t$ in the first case.
    $endgroup$
    – Jens Schwaiger
    Dec 25 '18 at 8:14












  • $begingroup$
    @JensSchwaiger Yes, thank you !
    $endgroup$
    – Goal123
    Dec 25 '18 at 10:28














  • 1




    $begingroup$
    Do you mean begin{equation} f_t(x) = begin{cases} -1 & text{if}; ,x<-t \ sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\ 1 & text{if};, x>t end{cases}? end{equation} I.e., $x<-t$ in the first case.
    $endgroup$
    – Jens Schwaiger
    Dec 25 '18 at 8:14












  • $begingroup$
    @JensSchwaiger Yes, thank you !
    $endgroup$
    – Goal123
    Dec 25 '18 at 10:28








1




1




$begingroup$
Do you mean begin{equation} f_t(x) = begin{cases} -1 & text{if}; ,x<-t \ sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\ 1 & text{if};, x>t end{cases}? end{equation} I.e., $x<-t$ in the first case.
$endgroup$
– Jens Schwaiger
Dec 25 '18 at 8:14






$begingroup$
Do you mean begin{equation} f_t(x) = begin{cases} -1 & text{if}; ,x<-t \ sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\ 1 & text{if};, x>t end{cases}? end{equation} I.e., $x<-t$ in the first case.
$endgroup$
– Jens Schwaiger
Dec 25 '18 at 8:14














$begingroup$
@JensSchwaiger Yes, thank you !
$endgroup$
– Goal123
Dec 25 '18 at 10:28




$begingroup$
@JensSchwaiger Yes, thank you !
$endgroup$
– Goal123
Dec 25 '18 at 10:28










2 Answers
2






active

oldest

votes


















1












$begingroup$

Such an estimate cannot hold. It would imply that $f_t(x) to operatorname{sgn}(x)$ uniformly in $x$, and – since each $f_t$ is a continuous function – that the limit function is continuous as well (which it isn't).






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    The inequality you want is not true. If $|f_t(x)-sgn(x)|<t$ then, taking $x=frac t n$ we get $|sin(frac {pi} {2n})-1|<t$ for all $n$ which implies $1leq t$.






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051915%2fdoes-f-tx-to-mboxsgnx-as-t-to-0-imply-f-tx-mboxsgnx-t%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      Such an estimate cannot hold. It would imply that $f_t(x) to operatorname{sgn}(x)$ uniformly in $x$, and – since each $f_t$ is a continuous function – that the limit function is continuous as well (which it isn't).






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        Such an estimate cannot hold. It would imply that $f_t(x) to operatorname{sgn}(x)$ uniformly in $x$, and – since each $f_t$ is a continuous function – that the limit function is continuous as well (which it isn't).






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          Such an estimate cannot hold. It would imply that $f_t(x) to operatorname{sgn}(x)$ uniformly in $x$, and – since each $f_t$ is a continuous function – that the limit function is continuous as well (which it isn't).






          share|cite|improve this answer









          $endgroup$



          Such an estimate cannot hold. It would imply that $f_t(x) to operatorname{sgn}(x)$ uniformly in $x$, and – since each $f_t$ is a continuous function – that the limit function is continuous as well (which it isn't).







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 25 '18 at 12:19









          Martin RMartin R

          29.8k33558




          29.8k33558























              1












              $begingroup$

              The inequality you want is not true. If $|f_t(x)-sgn(x)|<t$ then, taking $x=frac t n$ we get $|sin(frac {pi} {2n})-1|<t$ for all $n$ which implies $1leq t$.






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                The inequality you want is not true. If $|f_t(x)-sgn(x)|<t$ then, taking $x=frac t n$ we get $|sin(frac {pi} {2n})-1|<t$ for all $n$ which implies $1leq t$.






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  The inequality you want is not true. If $|f_t(x)-sgn(x)|<t$ then, taking $x=frac t n$ we get $|sin(frac {pi} {2n})-1|<t$ for all $n$ which implies $1leq t$.






                  share|cite|improve this answer











                  $endgroup$



                  The inequality you want is not true. If $|f_t(x)-sgn(x)|<t$ then, taking $x=frac t n$ we get $|sin(frac {pi} {2n})-1|<t$ for all $n$ which implies $1leq t$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 25 '18 at 7:26

























                  answered Dec 25 '18 at 7:19









                  Kavi Rama MurthyKavi Rama Murthy

                  66.9k53067




                  66.9k53067






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051915%2fdoes-f-tx-to-mboxsgnx-as-t-to-0-imply-f-tx-mboxsgnx-t%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Probability when a professor distributes a quiz and homework assignment to a class of n students.

                      Aardman Animations

                      Are they similar matrix