Does $f_t(x) to mbox{sgn}(x)$ as $ t to 0$ imply $|f_t(x) - mbox{sgn}(x)|< t$?
$begingroup$
Define a function $f: mathbb{R} to mathbb{R}$ as
$$begin{equation}
f_t(x) =
begin{cases}
-1 & text{if}; ,x<-t \
sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\
1 & text{if};, x>t
end{cases}
end{equation} $$
Then $f(x)$ converges pointwise to $mbox{sgn}(x)$ as $t to 0$.
I'm wondering if something stronger can be proven, can we say $|f_t(x) - mbox{sgn}(x)|< t$ ?
real-analysis analysis
$endgroup$
add a comment |
$begingroup$
Define a function $f: mathbb{R} to mathbb{R}$ as
$$begin{equation}
f_t(x) =
begin{cases}
-1 & text{if}; ,x<-t \
sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\
1 & text{if};, x>t
end{cases}
end{equation} $$
Then $f(x)$ converges pointwise to $mbox{sgn}(x)$ as $t to 0$.
I'm wondering if something stronger can be proven, can we say $|f_t(x) - mbox{sgn}(x)|< t$ ?
real-analysis analysis
$endgroup$
1
$begingroup$
Do you mean begin{equation} f_t(x) = begin{cases} -1 & text{if}; ,x<-t \ sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\ 1 & text{if};, x>t end{cases}? end{equation} I.e., $x<-t$ in the first case.
$endgroup$
– Jens Schwaiger
Dec 25 '18 at 8:14
$begingroup$
@JensSchwaiger Yes, thank you !
$endgroup$
– Goal123
Dec 25 '18 at 10:28
add a comment |
$begingroup$
Define a function $f: mathbb{R} to mathbb{R}$ as
$$begin{equation}
f_t(x) =
begin{cases}
-1 & text{if}; ,x<-t \
sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\
1 & text{if};, x>t
end{cases}
end{equation} $$
Then $f(x)$ converges pointwise to $mbox{sgn}(x)$ as $t to 0$.
I'm wondering if something stronger can be proven, can we say $|f_t(x) - mbox{sgn}(x)|< t$ ?
real-analysis analysis
$endgroup$
Define a function $f: mathbb{R} to mathbb{R}$ as
$$begin{equation}
f_t(x) =
begin{cases}
-1 & text{if}; ,x<-t \
sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\
1 & text{if};, x>t
end{cases}
end{equation} $$
Then $f(x)$ converges pointwise to $mbox{sgn}(x)$ as $t to 0$.
I'm wondering if something stronger can be proven, can we say $|f_t(x) - mbox{sgn}(x)|< t$ ?
real-analysis analysis
real-analysis analysis
edited Dec 25 '18 at 10:27
Goal123
asked Dec 25 '18 at 7:15
Goal123Goal123
505212
505212
1
$begingroup$
Do you mean begin{equation} f_t(x) = begin{cases} -1 & text{if}; ,x<-t \ sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\ 1 & text{if};, x>t end{cases}? end{equation} I.e., $x<-t$ in the first case.
$endgroup$
– Jens Schwaiger
Dec 25 '18 at 8:14
$begingroup$
@JensSchwaiger Yes, thank you !
$endgroup$
– Goal123
Dec 25 '18 at 10:28
add a comment |
1
$begingroup$
Do you mean begin{equation} f_t(x) = begin{cases} -1 & text{if}; ,x<-t \ sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\ 1 & text{if};, x>t end{cases}? end{equation} I.e., $x<-t$ in the first case.
$endgroup$
– Jens Schwaiger
Dec 25 '18 at 8:14
$begingroup$
@JensSchwaiger Yes, thank you !
$endgroup$
– Goal123
Dec 25 '18 at 10:28
1
1
$begingroup$
Do you mean begin{equation} f_t(x) = begin{cases} -1 & text{if}; ,x<-t \ sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\ 1 & text{if};, x>t end{cases}? end{equation} I.e., $x<-t$ in the first case.
$endgroup$
– Jens Schwaiger
Dec 25 '18 at 8:14
$begingroup$
Do you mean begin{equation} f_t(x) = begin{cases} -1 & text{if}; ,x<-t \ sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\ 1 & text{if};, x>t end{cases}? end{equation} I.e., $x<-t$ in the first case.
$endgroup$
– Jens Schwaiger
Dec 25 '18 at 8:14
$begingroup$
@JensSchwaiger Yes, thank you !
$endgroup$
– Goal123
Dec 25 '18 at 10:28
$begingroup$
@JensSchwaiger Yes, thank you !
$endgroup$
– Goal123
Dec 25 '18 at 10:28
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Such an estimate cannot hold. It would imply that $f_t(x) to operatorname{sgn}(x)$ uniformly in $x$, and – since each $f_t$ is a continuous function – that the limit function is continuous as well (which it isn't).
$endgroup$
add a comment |
$begingroup$
The inequality you want is not true. If $|f_t(x)-sgn(x)|<t$ then, taking $x=frac t n$ we get $|sin(frac {pi} {2n})-1|<t$ for all $n$ which implies $1leq t$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051915%2fdoes-f-tx-to-mboxsgnx-as-t-to-0-imply-f-tx-mboxsgnx-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Such an estimate cannot hold. It would imply that $f_t(x) to operatorname{sgn}(x)$ uniformly in $x$, and – since each $f_t$ is a continuous function – that the limit function is continuous as well (which it isn't).
$endgroup$
add a comment |
$begingroup$
Such an estimate cannot hold. It would imply that $f_t(x) to operatorname{sgn}(x)$ uniformly in $x$, and – since each $f_t$ is a continuous function – that the limit function is continuous as well (which it isn't).
$endgroup$
add a comment |
$begingroup$
Such an estimate cannot hold. It would imply that $f_t(x) to operatorname{sgn}(x)$ uniformly in $x$, and – since each $f_t$ is a continuous function – that the limit function is continuous as well (which it isn't).
$endgroup$
Such an estimate cannot hold. It would imply that $f_t(x) to operatorname{sgn}(x)$ uniformly in $x$, and – since each $f_t$ is a continuous function – that the limit function is continuous as well (which it isn't).
answered Dec 25 '18 at 12:19
Martin RMartin R
29.8k33558
29.8k33558
add a comment |
add a comment |
$begingroup$
The inequality you want is not true. If $|f_t(x)-sgn(x)|<t$ then, taking $x=frac t n$ we get $|sin(frac {pi} {2n})-1|<t$ for all $n$ which implies $1leq t$.
$endgroup$
add a comment |
$begingroup$
The inequality you want is not true. If $|f_t(x)-sgn(x)|<t$ then, taking $x=frac t n$ we get $|sin(frac {pi} {2n})-1|<t$ for all $n$ which implies $1leq t$.
$endgroup$
add a comment |
$begingroup$
The inequality you want is not true. If $|f_t(x)-sgn(x)|<t$ then, taking $x=frac t n$ we get $|sin(frac {pi} {2n})-1|<t$ for all $n$ which implies $1leq t$.
$endgroup$
The inequality you want is not true. If $|f_t(x)-sgn(x)|<t$ then, taking $x=frac t n$ we get $|sin(frac {pi} {2n})-1|<t$ for all $n$ which implies $1leq t$.
edited Dec 25 '18 at 7:26
answered Dec 25 '18 at 7:19
Kavi Rama MurthyKavi Rama Murthy
66.9k53067
66.9k53067
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051915%2fdoes-f-tx-to-mboxsgnx-as-t-to-0-imply-f-tx-mboxsgnx-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Do you mean begin{equation} f_t(x) = begin{cases} -1 & text{if}; ,x<-t \ sin left(frac{pi x}{2 t}right) & text{if};, |x| le t\ 1 & text{if};, x>t end{cases}? end{equation} I.e., $x<-t$ in the first case.
$endgroup$
– Jens Schwaiger
Dec 25 '18 at 8:14
$begingroup$
@JensSchwaiger Yes, thank you !
$endgroup$
– Goal123
Dec 25 '18 at 10:28