Show that $T:,c_0to c_0;;$, $xmapsto T(x)=(1,x_1,x_2,cdots),$ has no fixed points












0












$begingroup$


As a follow-up to my previous question Show that $T:,c_0to c_0;;$, $xmapsto T(x)=(1,x_1,x_2,cdots),$ is non-expansive. Let $X$ be a normed linear space and $X=c_0$ (the space of sequences of real numbers which converge to $0$). Define
begin{align} T:,&c_0to c_0 \ &xmapsto T(x)=(1,x_1,x_2,cdots), end{align}
for arbitrary $x=(1,x_1,x_2,cdots)in c_0.$ I want to show that $T$ has no fixed points.



Remark: We have that



$$c_0={bar{x}=(x_1,x_2,cdots) :x_nto 0;text{as};nto infty}.$$



MY TRIAL



Suppose for contradiction that $T$ has fixed points in $X$, then there exists $uin c_0$ s.t. $T(u)=u.$ That is,
begin{align} T(u_1,u_2,cdots)=(u_1,u_2,cdots), end{align}
Please, how do I draw out a contradiction from this?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    As a follow-up to my previous question Show that $T:,c_0to c_0;;$, $xmapsto T(x)=(1,x_1,x_2,cdots),$ is non-expansive. Let $X$ be a normed linear space and $X=c_0$ (the space of sequences of real numbers which converge to $0$). Define
    begin{align} T:,&c_0to c_0 \ &xmapsto T(x)=(1,x_1,x_2,cdots), end{align}
    for arbitrary $x=(1,x_1,x_2,cdots)in c_0.$ I want to show that $T$ has no fixed points.



    Remark: We have that



    $$c_0={bar{x}=(x_1,x_2,cdots) :x_nto 0;text{as};nto infty}.$$



    MY TRIAL



    Suppose for contradiction that $T$ has fixed points in $X$, then there exists $uin c_0$ s.t. $T(u)=u.$ That is,
    begin{align} T(u_1,u_2,cdots)=(u_1,u_2,cdots), end{align}
    Please, how do I draw out a contradiction from this?










    share|cite|improve this question









    $endgroup$















      0












      0








      0


      1



      $begingroup$


      As a follow-up to my previous question Show that $T:,c_0to c_0;;$, $xmapsto T(x)=(1,x_1,x_2,cdots),$ is non-expansive. Let $X$ be a normed linear space and $X=c_0$ (the space of sequences of real numbers which converge to $0$). Define
      begin{align} T:,&c_0to c_0 \ &xmapsto T(x)=(1,x_1,x_2,cdots), end{align}
      for arbitrary $x=(1,x_1,x_2,cdots)in c_0.$ I want to show that $T$ has no fixed points.



      Remark: We have that



      $$c_0={bar{x}=(x_1,x_2,cdots) :x_nto 0;text{as};nto infty}.$$



      MY TRIAL



      Suppose for contradiction that $T$ has fixed points in $X$, then there exists $uin c_0$ s.t. $T(u)=u.$ That is,
      begin{align} T(u_1,u_2,cdots)=(u_1,u_2,cdots), end{align}
      Please, how do I draw out a contradiction from this?










      share|cite|improve this question









      $endgroup$




      As a follow-up to my previous question Show that $T:,c_0to c_0;;$, $xmapsto T(x)=(1,x_1,x_2,cdots),$ is non-expansive. Let $X$ be a normed linear space and $X=c_0$ (the space of sequences of real numbers which converge to $0$). Define
      begin{align} T:,&c_0to c_0 \ &xmapsto T(x)=(1,x_1,x_2,cdots), end{align}
      for arbitrary $x=(1,x_1,x_2,cdots)in c_0.$ I want to show that $T$ has no fixed points.



      Remark: We have that



      $$c_0={bar{x}=(x_1,x_2,cdots) :x_nto 0;text{as};nto infty}.$$



      MY TRIAL



      Suppose for contradiction that $T$ has fixed points in $X$, then there exists $uin c_0$ s.t. $T(u)=u.$ That is,
      begin{align} T(u_1,u_2,cdots)=(u_1,u_2,cdots), end{align}
      Please, how do I draw out a contradiction from this?







      functional-analysis analysis normed-spaces fixed-point-theorems






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 14 '18 at 8:55









      Omojola MichealOmojola Micheal

      1,875324




      1,875324






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          $(1,u_1,u_2,...)=(u_1,u_2,..)$ implies $1=u_1,u_1=u_2$ etc so $u_n=1$ for all $n$. But then $(u_n) notin c_0$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Sorry Sir, how's $u_nnotin c_0$?
            $endgroup$
            – Omojola Micheal
            Dec 14 '18 at 8:58










          • $begingroup$
            Let me guess, it's because $u_n$ does not go to zero and $ntoinfty.$ Therefore, $u_nnotin c_o. $ I'm I right?
            $endgroup$
            – Omojola Micheal
            Dec 14 '18 at 9:01












          • $begingroup$
            Yes, $u_n to 1$.
            $endgroup$
            – Kavi Rama Murthy
            Dec 14 '18 at 9:02











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039127%2fshow-that-t-c-0-to-c-0-x-mapsto-tx-1-x-1-x-2-cdots-has-no-fixed%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          $(1,u_1,u_2,...)=(u_1,u_2,..)$ implies $1=u_1,u_1=u_2$ etc so $u_n=1$ for all $n$. But then $(u_n) notin c_0$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Sorry Sir, how's $u_nnotin c_0$?
            $endgroup$
            – Omojola Micheal
            Dec 14 '18 at 8:58










          • $begingroup$
            Let me guess, it's because $u_n$ does not go to zero and $ntoinfty.$ Therefore, $u_nnotin c_o. $ I'm I right?
            $endgroup$
            – Omojola Micheal
            Dec 14 '18 at 9:01












          • $begingroup$
            Yes, $u_n to 1$.
            $endgroup$
            – Kavi Rama Murthy
            Dec 14 '18 at 9:02
















          1












          $begingroup$

          $(1,u_1,u_2,...)=(u_1,u_2,..)$ implies $1=u_1,u_1=u_2$ etc so $u_n=1$ for all $n$. But then $(u_n) notin c_0$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Sorry Sir, how's $u_nnotin c_0$?
            $endgroup$
            – Omojola Micheal
            Dec 14 '18 at 8:58










          • $begingroup$
            Let me guess, it's because $u_n$ does not go to zero and $ntoinfty.$ Therefore, $u_nnotin c_o. $ I'm I right?
            $endgroup$
            – Omojola Micheal
            Dec 14 '18 at 9:01












          • $begingroup$
            Yes, $u_n to 1$.
            $endgroup$
            – Kavi Rama Murthy
            Dec 14 '18 at 9:02














          1












          1








          1





          $begingroup$

          $(1,u_1,u_2,...)=(u_1,u_2,..)$ implies $1=u_1,u_1=u_2$ etc so $u_n=1$ for all $n$. But then $(u_n) notin c_0$.






          share|cite|improve this answer









          $endgroup$



          $(1,u_1,u_2,...)=(u_1,u_2,..)$ implies $1=u_1,u_1=u_2$ etc so $u_n=1$ for all $n$. But then $(u_n) notin c_0$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 14 '18 at 8:57









          Kavi Rama MurthyKavi Rama Murthy

          60.6k42161




          60.6k42161












          • $begingroup$
            Sorry Sir, how's $u_nnotin c_0$?
            $endgroup$
            – Omojola Micheal
            Dec 14 '18 at 8:58










          • $begingroup$
            Let me guess, it's because $u_n$ does not go to zero and $ntoinfty.$ Therefore, $u_nnotin c_o. $ I'm I right?
            $endgroup$
            – Omojola Micheal
            Dec 14 '18 at 9:01












          • $begingroup$
            Yes, $u_n to 1$.
            $endgroup$
            – Kavi Rama Murthy
            Dec 14 '18 at 9:02


















          • $begingroup$
            Sorry Sir, how's $u_nnotin c_0$?
            $endgroup$
            – Omojola Micheal
            Dec 14 '18 at 8:58










          • $begingroup$
            Let me guess, it's because $u_n$ does not go to zero and $ntoinfty.$ Therefore, $u_nnotin c_o. $ I'm I right?
            $endgroup$
            – Omojola Micheal
            Dec 14 '18 at 9:01












          • $begingroup$
            Yes, $u_n to 1$.
            $endgroup$
            – Kavi Rama Murthy
            Dec 14 '18 at 9:02
















          $begingroup$
          Sorry Sir, how's $u_nnotin c_0$?
          $endgroup$
          – Omojola Micheal
          Dec 14 '18 at 8:58




          $begingroup$
          Sorry Sir, how's $u_nnotin c_0$?
          $endgroup$
          – Omojola Micheal
          Dec 14 '18 at 8:58












          $begingroup$
          Let me guess, it's because $u_n$ does not go to zero and $ntoinfty.$ Therefore, $u_nnotin c_o. $ I'm I right?
          $endgroup$
          – Omojola Micheal
          Dec 14 '18 at 9:01






          $begingroup$
          Let me guess, it's because $u_n$ does not go to zero and $ntoinfty.$ Therefore, $u_nnotin c_o. $ I'm I right?
          $endgroup$
          – Omojola Micheal
          Dec 14 '18 at 9:01














          $begingroup$
          Yes, $u_n to 1$.
          $endgroup$
          – Kavi Rama Murthy
          Dec 14 '18 at 9:02




          $begingroup$
          Yes, $u_n to 1$.
          $endgroup$
          – Kavi Rama Murthy
          Dec 14 '18 at 9:02


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039127%2fshow-that-t-c-0-to-c-0-x-mapsto-tx-1-x-1-x-2-cdots-has-no-fixed%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Probability when a professor distributes a quiz and homework assignment to a class of n students.

          Aardman Animations

          Are they similar matrix