Show that $T:,c_0to c_0;;$, $xmapsto T(x)=(1,x_1,x_2,cdots),$ has no fixed points
$begingroup$
As a follow-up to my previous question Show that $T:,c_0to c_0;;$, $xmapsto T(x)=(1,x_1,x_2,cdots),$ is non-expansive. Let $X$ be a normed linear space and $X=c_0$ (the space of sequences of real numbers which converge to $0$). Define
begin{align} T:,&c_0to c_0 \ &xmapsto T(x)=(1,x_1,x_2,cdots), end{align}
for arbitrary $x=(1,x_1,x_2,cdots)in c_0.$ I want to show that $T$ has no fixed points.
Remark: We have that
$$c_0={bar{x}=(x_1,x_2,cdots) :x_nto 0;text{as};nto infty}.$$
MY TRIAL
Suppose for contradiction that $T$ has fixed points in $X$, then there exists $uin c_0$ s.t. $T(u)=u.$ That is,
begin{align} T(u_1,u_2,cdots)=(u_1,u_2,cdots), end{align}
Please, how do I draw out a contradiction from this?
functional-analysis analysis normed-spaces fixed-point-theorems
$endgroup$
add a comment |
$begingroup$
As a follow-up to my previous question Show that $T:,c_0to c_0;;$, $xmapsto T(x)=(1,x_1,x_2,cdots),$ is non-expansive. Let $X$ be a normed linear space and $X=c_0$ (the space of sequences of real numbers which converge to $0$). Define
begin{align} T:,&c_0to c_0 \ &xmapsto T(x)=(1,x_1,x_2,cdots), end{align}
for arbitrary $x=(1,x_1,x_2,cdots)in c_0.$ I want to show that $T$ has no fixed points.
Remark: We have that
$$c_0={bar{x}=(x_1,x_2,cdots) :x_nto 0;text{as};nto infty}.$$
MY TRIAL
Suppose for contradiction that $T$ has fixed points in $X$, then there exists $uin c_0$ s.t. $T(u)=u.$ That is,
begin{align} T(u_1,u_2,cdots)=(u_1,u_2,cdots), end{align}
Please, how do I draw out a contradiction from this?
functional-analysis analysis normed-spaces fixed-point-theorems
$endgroup$
add a comment |
$begingroup$
As a follow-up to my previous question Show that $T:,c_0to c_0;;$, $xmapsto T(x)=(1,x_1,x_2,cdots),$ is non-expansive. Let $X$ be a normed linear space and $X=c_0$ (the space of sequences of real numbers which converge to $0$). Define
begin{align} T:,&c_0to c_0 \ &xmapsto T(x)=(1,x_1,x_2,cdots), end{align}
for arbitrary $x=(1,x_1,x_2,cdots)in c_0.$ I want to show that $T$ has no fixed points.
Remark: We have that
$$c_0={bar{x}=(x_1,x_2,cdots) :x_nto 0;text{as};nto infty}.$$
MY TRIAL
Suppose for contradiction that $T$ has fixed points in $X$, then there exists $uin c_0$ s.t. $T(u)=u.$ That is,
begin{align} T(u_1,u_2,cdots)=(u_1,u_2,cdots), end{align}
Please, how do I draw out a contradiction from this?
functional-analysis analysis normed-spaces fixed-point-theorems
$endgroup$
As a follow-up to my previous question Show that $T:,c_0to c_0;;$, $xmapsto T(x)=(1,x_1,x_2,cdots),$ is non-expansive. Let $X$ be a normed linear space and $X=c_0$ (the space of sequences of real numbers which converge to $0$). Define
begin{align} T:,&c_0to c_0 \ &xmapsto T(x)=(1,x_1,x_2,cdots), end{align}
for arbitrary $x=(1,x_1,x_2,cdots)in c_0.$ I want to show that $T$ has no fixed points.
Remark: We have that
$$c_0={bar{x}=(x_1,x_2,cdots) :x_nto 0;text{as};nto infty}.$$
MY TRIAL
Suppose for contradiction that $T$ has fixed points in $X$, then there exists $uin c_0$ s.t. $T(u)=u.$ That is,
begin{align} T(u_1,u_2,cdots)=(u_1,u_2,cdots), end{align}
Please, how do I draw out a contradiction from this?
functional-analysis analysis normed-spaces fixed-point-theorems
functional-analysis analysis normed-spaces fixed-point-theorems
asked Dec 14 '18 at 8:55
Omojola MichealOmojola Micheal
1,875324
1,875324
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$(1,u_1,u_2,...)=(u_1,u_2,..)$ implies $1=u_1,u_1=u_2$ etc so $u_n=1$ for all $n$. But then $(u_n) notin c_0$.
$endgroup$
$begingroup$
Sorry Sir, how's $u_nnotin c_0$?
$endgroup$
– Omojola Micheal
Dec 14 '18 at 8:58
$begingroup$
Let me guess, it's because $u_n$ does not go to zero and $ntoinfty.$ Therefore, $u_nnotin c_o. $ I'm I right?
$endgroup$
– Omojola Micheal
Dec 14 '18 at 9:01
$begingroup$
Yes, $u_n to 1$.
$endgroup$
– Kavi Rama Murthy
Dec 14 '18 at 9:02
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039127%2fshow-that-t-c-0-to-c-0-x-mapsto-tx-1-x-1-x-2-cdots-has-no-fixed%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$(1,u_1,u_2,...)=(u_1,u_2,..)$ implies $1=u_1,u_1=u_2$ etc so $u_n=1$ for all $n$. But then $(u_n) notin c_0$.
$endgroup$
$begingroup$
Sorry Sir, how's $u_nnotin c_0$?
$endgroup$
– Omojola Micheal
Dec 14 '18 at 8:58
$begingroup$
Let me guess, it's because $u_n$ does not go to zero and $ntoinfty.$ Therefore, $u_nnotin c_o. $ I'm I right?
$endgroup$
– Omojola Micheal
Dec 14 '18 at 9:01
$begingroup$
Yes, $u_n to 1$.
$endgroup$
– Kavi Rama Murthy
Dec 14 '18 at 9:02
add a comment |
$begingroup$
$(1,u_1,u_2,...)=(u_1,u_2,..)$ implies $1=u_1,u_1=u_2$ etc so $u_n=1$ for all $n$. But then $(u_n) notin c_0$.
$endgroup$
$begingroup$
Sorry Sir, how's $u_nnotin c_0$?
$endgroup$
– Omojola Micheal
Dec 14 '18 at 8:58
$begingroup$
Let me guess, it's because $u_n$ does not go to zero and $ntoinfty.$ Therefore, $u_nnotin c_o. $ I'm I right?
$endgroup$
– Omojola Micheal
Dec 14 '18 at 9:01
$begingroup$
Yes, $u_n to 1$.
$endgroup$
– Kavi Rama Murthy
Dec 14 '18 at 9:02
add a comment |
$begingroup$
$(1,u_1,u_2,...)=(u_1,u_2,..)$ implies $1=u_1,u_1=u_2$ etc so $u_n=1$ for all $n$. But then $(u_n) notin c_0$.
$endgroup$
$(1,u_1,u_2,...)=(u_1,u_2,..)$ implies $1=u_1,u_1=u_2$ etc so $u_n=1$ for all $n$. But then $(u_n) notin c_0$.
answered Dec 14 '18 at 8:57
Kavi Rama MurthyKavi Rama Murthy
60.6k42161
60.6k42161
$begingroup$
Sorry Sir, how's $u_nnotin c_0$?
$endgroup$
– Omojola Micheal
Dec 14 '18 at 8:58
$begingroup$
Let me guess, it's because $u_n$ does not go to zero and $ntoinfty.$ Therefore, $u_nnotin c_o. $ I'm I right?
$endgroup$
– Omojola Micheal
Dec 14 '18 at 9:01
$begingroup$
Yes, $u_n to 1$.
$endgroup$
– Kavi Rama Murthy
Dec 14 '18 at 9:02
add a comment |
$begingroup$
Sorry Sir, how's $u_nnotin c_0$?
$endgroup$
– Omojola Micheal
Dec 14 '18 at 8:58
$begingroup$
Let me guess, it's because $u_n$ does not go to zero and $ntoinfty.$ Therefore, $u_nnotin c_o. $ I'm I right?
$endgroup$
– Omojola Micheal
Dec 14 '18 at 9:01
$begingroup$
Yes, $u_n to 1$.
$endgroup$
– Kavi Rama Murthy
Dec 14 '18 at 9:02
$begingroup$
Sorry Sir, how's $u_nnotin c_0$?
$endgroup$
– Omojola Micheal
Dec 14 '18 at 8:58
$begingroup$
Sorry Sir, how's $u_nnotin c_0$?
$endgroup$
– Omojola Micheal
Dec 14 '18 at 8:58
$begingroup$
Let me guess, it's because $u_n$ does not go to zero and $ntoinfty.$ Therefore, $u_nnotin c_o. $ I'm I right?
$endgroup$
– Omojola Micheal
Dec 14 '18 at 9:01
$begingroup$
Let me guess, it's because $u_n$ does not go to zero and $ntoinfty.$ Therefore, $u_nnotin c_o. $ I'm I right?
$endgroup$
– Omojola Micheal
Dec 14 '18 at 9:01
$begingroup$
Yes, $u_n to 1$.
$endgroup$
– Kavi Rama Murthy
Dec 14 '18 at 9:02
$begingroup$
Yes, $u_n to 1$.
$endgroup$
– Kavi Rama Murthy
Dec 14 '18 at 9:02
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039127%2fshow-that-t-c-0-to-c-0-x-mapsto-tx-1-x-1-x-2-cdots-has-no-fixed%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown