Almost complete convergence
$begingroup$
In the book nonparametric functionnal data analysis, page 232, i don't understand why:
The almost complete convergence of $Y_n$ to $lne 0$ implies that there
exists some $delta > 0$ (choose for instance $delta = l/2$) such that
$$sum_{ige 0}mathsf{P}(|Y_n| le delta) < infty.$$
Cordially.
probability-theory statistics measure-theory
$endgroup$
add a comment |
$begingroup$
In the book nonparametric functionnal data analysis, page 232, i don't understand why:
The almost complete convergence of $Y_n$ to $lne 0$ implies that there
exists some $delta > 0$ (choose for instance $delta = l/2$) such that
$$sum_{ige 0}mathsf{P}(|Y_n| le delta) < infty.$$
Cordially.
probability-theory statistics measure-theory
$endgroup$
1
$begingroup$
What does almost complete convergence mean?
$endgroup$
– Kavi Rama Murthy
Dec 14 '18 at 8:52
$begingroup$
Thank you very much
$endgroup$
– estimation
Dec 14 '18 at 13:00
$begingroup$
almost complete convergence of (Yn) to Y MEAN for each δ > 0: $$∑n∈N P(|Yn-Y | >δ)<∞.$$
$endgroup$
– estimation
Dec 14 '18 at 13:06
$begingroup$
the sum over n∈N, of P(|Yn−Y|>δ) is finite.
$endgroup$
– estimation
Dec 14 '18 at 13:22
add a comment |
$begingroup$
In the book nonparametric functionnal data analysis, page 232, i don't understand why:
The almost complete convergence of $Y_n$ to $lne 0$ implies that there
exists some $delta > 0$ (choose for instance $delta = l/2$) such that
$$sum_{ige 0}mathsf{P}(|Y_n| le delta) < infty.$$
Cordially.
probability-theory statistics measure-theory
$endgroup$
In the book nonparametric functionnal data analysis, page 232, i don't understand why:
The almost complete convergence of $Y_n$ to $lne 0$ implies that there
exists some $delta > 0$ (choose for instance $delta = l/2$) such that
$$sum_{ige 0}mathsf{P}(|Y_n| le delta) < infty.$$
Cordially.
probability-theory statistics measure-theory
probability-theory statistics measure-theory
edited Dec 14 '18 at 9:33
d.k.o.
9,520628
9,520628
asked Dec 14 '18 at 8:49
estimationestimation
12
12
1
$begingroup$
What does almost complete convergence mean?
$endgroup$
– Kavi Rama Murthy
Dec 14 '18 at 8:52
$begingroup$
Thank you very much
$endgroup$
– estimation
Dec 14 '18 at 13:00
$begingroup$
almost complete convergence of (Yn) to Y MEAN for each δ > 0: $$∑n∈N P(|Yn-Y | >δ)<∞.$$
$endgroup$
– estimation
Dec 14 '18 at 13:06
$begingroup$
the sum over n∈N, of P(|Yn−Y|>δ) is finite.
$endgroup$
– estimation
Dec 14 '18 at 13:22
add a comment |
1
$begingroup$
What does almost complete convergence mean?
$endgroup$
– Kavi Rama Murthy
Dec 14 '18 at 8:52
$begingroup$
Thank you very much
$endgroup$
– estimation
Dec 14 '18 at 13:00
$begingroup$
almost complete convergence of (Yn) to Y MEAN for each δ > 0: $$∑n∈N P(|Yn-Y | >δ)<∞.$$
$endgroup$
– estimation
Dec 14 '18 at 13:06
$begingroup$
the sum over n∈N, of P(|Yn−Y|>δ) is finite.
$endgroup$
– estimation
Dec 14 '18 at 13:22
1
1
$begingroup$
What does almost complete convergence mean?
$endgroup$
– Kavi Rama Murthy
Dec 14 '18 at 8:52
$begingroup$
What does almost complete convergence mean?
$endgroup$
– Kavi Rama Murthy
Dec 14 '18 at 8:52
$begingroup$
Thank you very much
$endgroup$
– estimation
Dec 14 '18 at 13:00
$begingroup$
Thank you very much
$endgroup$
– estimation
Dec 14 '18 at 13:00
$begingroup$
almost complete convergence of (Yn) to Y MEAN for each δ > 0: $$∑n∈N P(|Yn-Y | >δ)<∞.$$
$endgroup$
– estimation
Dec 14 '18 at 13:06
$begingroup$
almost complete convergence of (Yn) to Y MEAN for each δ > 0: $$∑n∈N P(|Yn-Y | >δ)<∞.$$
$endgroup$
– estimation
Dec 14 '18 at 13:06
$begingroup$
the sum over n∈N, of P(|Yn−Y|>δ) is finite.
$endgroup$
– estimation
Dec 14 '18 at 13:22
$begingroup$
the sum over n∈N, of P(|Yn−Y|>δ) is finite.
$endgroup$
– estimation
Dec 14 '18 at 13:22
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Suppose that $l>0$. Since
begin{align}
mathsf{P}(|Y_n|le l/2)&=mathsf{P}(-l/2le Y_nle l/2)\
&le mathsf{P}(Y_nle l-l/2)le mathsf{P}(|Y_n-l|ge l/2),
end{align}
$$
sum_{nge 1}mathsf{P}(|Y_n|le l/2)le sum_{nge 1}mathsf{P}(|Y_n-l|ge l/2)<infty.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039122%2falmost-complete-convergence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Suppose that $l>0$. Since
begin{align}
mathsf{P}(|Y_n|le l/2)&=mathsf{P}(-l/2le Y_nle l/2)\
&le mathsf{P}(Y_nle l-l/2)le mathsf{P}(|Y_n-l|ge l/2),
end{align}
$$
sum_{nge 1}mathsf{P}(|Y_n|le l/2)le sum_{nge 1}mathsf{P}(|Y_n-l|ge l/2)<infty.
$$
$endgroup$
add a comment |
$begingroup$
Suppose that $l>0$. Since
begin{align}
mathsf{P}(|Y_n|le l/2)&=mathsf{P}(-l/2le Y_nle l/2)\
&le mathsf{P}(Y_nle l-l/2)le mathsf{P}(|Y_n-l|ge l/2),
end{align}
$$
sum_{nge 1}mathsf{P}(|Y_n|le l/2)le sum_{nge 1}mathsf{P}(|Y_n-l|ge l/2)<infty.
$$
$endgroup$
add a comment |
$begingroup$
Suppose that $l>0$. Since
begin{align}
mathsf{P}(|Y_n|le l/2)&=mathsf{P}(-l/2le Y_nle l/2)\
&le mathsf{P}(Y_nle l-l/2)le mathsf{P}(|Y_n-l|ge l/2),
end{align}
$$
sum_{nge 1}mathsf{P}(|Y_n|le l/2)le sum_{nge 1}mathsf{P}(|Y_n-l|ge l/2)<infty.
$$
$endgroup$
Suppose that $l>0$. Since
begin{align}
mathsf{P}(|Y_n|le l/2)&=mathsf{P}(-l/2le Y_nle l/2)\
&le mathsf{P}(Y_nle l-l/2)le mathsf{P}(|Y_n-l|ge l/2),
end{align}
$$
sum_{nge 1}mathsf{P}(|Y_n|le l/2)le sum_{nge 1}mathsf{P}(|Y_n-l|ge l/2)<infty.
$$
answered Dec 14 '18 at 9:31
d.k.o.d.k.o.
9,520628
9,520628
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039122%2falmost-complete-convergence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
What does almost complete convergence mean?
$endgroup$
– Kavi Rama Murthy
Dec 14 '18 at 8:52
$begingroup$
Thank you very much
$endgroup$
– estimation
Dec 14 '18 at 13:00
$begingroup$
almost complete convergence of (Yn) to Y MEAN for each δ > 0: $$∑n∈N P(|Yn-Y | >δ)<∞.$$
$endgroup$
– estimation
Dec 14 '18 at 13:06
$begingroup$
the sum over n∈N, of P(|Yn−Y|>δ) is finite.
$endgroup$
– estimation
Dec 14 '18 at 13:22