Refinement of Schwarz's Lemma
$begingroup$
The following is a refinement of Schwarz's Lemma. I am trying to prove for $$|z| leq R$$ that
$$|f(z)|leq M left(frac{M|z|+|a|R}{|a||z|+MR}right)$$ where $$f(z)$$ is analytic in $$|z|leq R$$ such that $$|f(z)| leq M$$ on $z=R$ and $f(0)=a$ where $|a|< M$. I know we want to take a derivative, but still have not come up with a solution.
analysis
$endgroup$
add a comment |
$begingroup$
The following is a refinement of Schwarz's Lemma. I am trying to prove for $$|z| leq R$$ that
$$|f(z)|leq M left(frac{M|z|+|a|R}{|a||z|+MR}right)$$ where $$f(z)$$ is analytic in $$|z|leq R$$ such that $$|f(z)| leq M$$ on $z=R$ and $f(0)=a$ where $|a|< M$. I know we want to take a derivative, but still have not come up with a solution.
analysis
$endgroup$
add a comment |
$begingroup$
The following is a refinement of Schwarz's Lemma. I am trying to prove for $$|z| leq R$$ that
$$|f(z)|leq M left(frac{M|z|+|a|R}{|a||z|+MR}right)$$ where $$f(z)$$ is analytic in $$|z|leq R$$ such that $$|f(z)| leq M$$ on $z=R$ and $f(0)=a$ where $|a|< M$. I know we want to take a derivative, but still have not come up with a solution.
analysis
$endgroup$
The following is a refinement of Schwarz's Lemma. I am trying to prove for $$|z| leq R$$ that
$$|f(z)|leq M left(frac{M|z|+|a|R}{|a||z|+MR}right)$$ where $$f(z)$$ is analytic in $$|z|leq R$$ such that $$|f(z)| leq M$$ on $z=R$ and $f(0)=a$ where $|a|< M$. I know we want to take a derivative, but still have not come up with a solution.
analysis
analysis
edited Dec 14 '18 at 5:42
Song
13.8k633
13.8k633
asked Nov 26 '18 at 3:48
Charles BrannanCharles Brannan
13
13
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Consider $$F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$$ If $f$ is analytic in $|z|leq 1$ and $|f(z)|leq 1$ in $|z|leq 1$, then $$|f(z)|leq frac{(1-|a|)|z^2|+|bz|+|a|(1-|a|)}{|a|(1-|a|)|z^2|+|bz|+(1-|a|)}$$ for $|z|leq 1$ where $a=f(0)$ and $b=f '(0)$. Thus $$f(z)=frac{a+frac{b}{1+a}z-z^2}{1-frac{b}{1+a}z-az^2}$$
$endgroup$
add a comment |
$begingroup$
Consider $F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$,$hspace{0.3cm}$ $|z|leq 1$ $hspace{0.3cm} Longrightarrow|Rz|leq R hspace{0.5cm}$
Let $$hspace{0.2cm} overline{a}f(Rz)-M^2=0 hspace{0.1cm}\ Longleftrightarrow |a||f(Rz)|= M^2 Longleftrightarrow |f(Rz)|=frac{M^2}{|a|}>M$$ $|F(z)| leq Mhspace{0.3cm} $ on $hspace{0.3cm}|z|=R hspace{0.1cm} Longleftrightarrow |f(Rz)|leq M hspace{0.3cm}$ on $hspace{0.3cm}|z|leq 1 $ $$Longrightarrow|overline{a}f(Rz)| leq |a|M <M^2 Longrightarrow overline{a}f(Rz)-M^2neq 0$$ in $|z| leq 1 $. $$$$So, $F(z)$ is analytic in $|z|leq 1$. $$F(0)=Mleft(frac{f(0)-a}{overline{a}f(0)-M^2}right)=0$$ $$ $$Let $f(Rz)=w$, $hspace{0.4cm}w leq Mhspace{0.3cm}$ on $hspace{0.3cm}|z|=1$. $hspace{0.3cm}$ Now suppose $$left|M frac{w-a}{overline{a}w-M^2}right|^2=M^2 frac{|w|^2 + |a|^2-2hspace{0.1cm} Re(overline{a}w)}{M^4+|a|^2 |w|^2-2hspace{0.1cm} Re(M^2 overline{a}w)}leq 1$$ $Longleftrightarrow M^2 |w|^2+M^2|a|^2leq M^4+|a|^2 |w|^2$ $$Longleftrightarrow M^2 |a|^2-|a|^2|w|^2leq M^4-M^2 |w|^2 $$ $$Longleftrightarrow |a|^2leq M^2 Longleftrightarrow |a| leq M $$ $$$$So,$hspace{0.3cm}F(z) leq1 hspace{0.2cm}$ on $hspace{0.2cm}|z|=1.$ $hspace{0.2cm}$ By Schwarz's Lemma, we have $|F(z)|
leq |z|$, $hspace{0.2cm}$so $$Mleft|frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right| leq|z| Longrightarrow left|frac{frac{f(Rz)}{M}-frac{a}{M}}{1-frac{{a}}{M}frac{f(Rz)}{M}}right|hspace{0.3cm} leq |z|$$ $$ Longrightarrow frac{frac{|f(Rz)|}{M}-frac{|a|}{M}}{1-frac{{|a|}}{M}frac{|f(Rz)|}{M}}hspace{0.3cm} leq |z|$$ $$Longrightarrow frac{|f(Rz)|}{M}-frac{|a|}{M} hspace{0.2cm}leq hspace{0.1cm} |z|-frac{|z||a||f(Rz)|}{M^2}$$ $$Longrightarrow frac{|f(Rz)|}{M}+frac{|z||a||f(Rz)|}{M^2} hspace{0.2cm}leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)| left(frac{1}{M}+hspace{0.2cm}frac{|z||a|}{M^2}right)leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)|leq frac{|z|+frac{|a|}{M}}{frac{1}{M}+frac{|z||a|)}{M^2}}hspace{0.3cm}= Mleft( frac{M|z|+|a|}{M+|z||a|}right)$$ Now let $hspace{0.2cm} u=
Rz$, $hspace{0.3cm}|z|leq 1$, $hspace{0.2cm}$then $hspace{0.2cm} z=frac{u}{R}$, $hspace{0.2cm}$and $hspace{0.2cm}|u|leq R$.$hspace{0.3cm}$ So, $$|f(u)|leq M left(frac{Mfrac{|u|}{R}+|a|}{M+|a|frac{|u|}{R}}right)=Mleft( frac{M|u|+|a|R}{|a||u|+MR}right)hspace{0.2cm}$$ Therefore, the result follows replacing $u$ with $z$. $hspace{0.9cm}Box$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013808%2frefinement-of-schwarzs-lemma%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Consider $$F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$$ If $f$ is analytic in $|z|leq 1$ and $|f(z)|leq 1$ in $|z|leq 1$, then $$|f(z)|leq frac{(1-|a|)|z^2|+|bz|+|a|(1-|a|)}{|a|(1-|a|)|z^2|+|bz|+(1-|a|)}$$ for $|z|leq 1$ where $a=f(0)$ and $b=f '(0)$. Thus $$f(z)=frac{a+frac{b}{1+a}z-z^2}{1-frac{b}{1+a}z-az^2}$$
$endgroup$
add a comment |
$begingroup$
Consider $$F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$$ If $f$ is analytic in $|z|leq 1$ and $|f(z)|leq 1$ in $|z|leq 1$, then $$|f(z)|leq frac{(1-|a|)|z^2|+|bz|+|a|(1-|a|)}{|a|(1-|a|)|z^2|+|bz|+(1-|a|)}$$ for $|z|leq 1$ where $a=f(0)$ and $b=f '(0)$. Thus $$f(z)=frac{a+frac{b}{1+a}z-z^2}{1-frac{b}{1+a}z-az^2}$$
$endgroup$
add a comment |
$begingroup$
Consider $$F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$$ If $f$ is analytic in $|z|leq 1$ and $|f(z)|leq 1$ in $|z|leq 1$, then $$|f(z)|leq frac{(1-|a|)|z^2|+|bz|+|a|(1-|a|)}{|a|(1-|a|)|z^2|+|bz|+(1-|a|)}$$ for $|z|leq 1$ where $a=f(0)$ and $b=f '(0)$. Thus $$f(z)=frac{a+frac{b}{1+a}z-z^2}{1-frac{b}{1+a}z-az^2}$$
$endgroup$
Consider $$F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$$ If $f$ is analytic in $|z|leq 1$ and $|f(z)|leq 1$ in $|z|leq 1$, then $$|f(z)|leq frac{(1-|a|)|z^2|+|bz|+|a|(1-|a|)}{|a|(1-|a|)|z^2|+|bz|+(1-|a|)}$$ for $|z|leq 1$ where $a=f(0)$ and $b=f '(0)$. Thus $$f(z)=frac{a+frac{b}{1+a}z-z^2}{1-frac{b}{1+a}z-az^2}$$
answered Nov 28 '18 at 22:25
user620787user620787
31
31
add a comment |
add a comment |
$begingroup$
Consider $F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$,$hspace{0.3cm}$ $|z|leq 1$ $hspace{0.3cm} Longrightarrow|Rz|leq R hspace{0.5cm}$
Let $$hspace{0.2cm} overline{a}f(Rz)-M^2=0 hspace{0.1cm}\ Longleftrightarrow |a||f(Rz)|= M^2 Longleftrightarrow |f(Rz)|=frac{M^2}{|a|}>M$$ $|F(z)| leq Mhspace{0.3cm} $ on $hspace{0.3cm}|z|=R hspace{0.1cm} Longleftrightarrow |f(Rz)|leq M hspace{0.3cm}$ on $hspace{0.3cm}|z|leq 1 $ $$Longrightarrow|overline{a}f(Rz)| leq |a|M <M^2 Longrightarrow overline{a}f(Rz)-M^2neq 0$$ in $|z| leq 1 $. $$$$So, $F(z)$ is analytic in $|z|leq 1$. $$F(0)=Mleft(frac{f(0)-a}{overline{a}f(0)-M^2}right)=0$$ $$ $$Let $f(Rz)=w$, $hspace{0.4cm}w leq Mhspace{0.3cm}$ on $hspace{0.3cm}|z|=1$. $hspace{0.3cm}$ Now suppose $$left|M frac{w-a}{overline{a}w-M^2}right|^2=M^2 frac{|w|^2 + |a|^2-2hspace{0.1cm} Re(overline{a}w)}{M^4+|a|^2 |w|^2-2hspace{0.1cm} Re(M^2 overline{a}w)}leq 1$$ $Longleftrightarrow M^2 |w|^2+M^2|a|^2leq M^4+|a|^2 |w|^2$ $$Longleftrightarrow M^2 |a|^2-|a|^2|w|^2leq M^4-M^2 |w|^2 $$ $$Longleftrightarrow |a|^2leq M^2 Longleftrightarrow |a| leq M $$ $$$$So,$hspace{0.3cm}F(z) leq1 hspace{0.2cm}$ on $hspace{0.2cm}|z|=1.$ $hspace{0.2cm}$ By Schwarz's Lemma, we have $|F(z)|
leq |z|$, $hspace{0.2cm}$so $$Mleft|frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right| leq|z| Longrightarrow left|frac{frac{f(Rz)}{M}-frac{a}{M}}{1-frac{{a}}{M}frac{f(Rz)}{M}}right|hspace{0.3cm} leq |z|$$ $$ Longrightarrow frac{frac{|f(Rz)|}{M}-frac{|a|}{M}}{1-frac{{|a|}}{M}frac{|f(Rz)|}{M}}hspace{0.3cm} leq |z|$$ $$Longrightarrow frac{|f(Rz)|}{M}-frac{|a|}{M} hspace{0.2cm}leq hspace{0.1cm} |z|-frac{|z||a||f(Rz)|}{M^2}$$ $$Longrightarrow frac{|f(Rz)|}{M}+frac{|z||a||f(Rz)|}{M^2} hspace{0.2cm}leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)| left(frac{1}{M}+hspace{0.2cm}frac{|z||a|}{M^2}right)leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)|leq frac{|z|+frac{|a|}{M}}{frac{1}{M}+frac{|z||a|)}{M^2}}hspace{0.3cm}= Mleft( frac{M|z|+|a|}{M+|z||a|}right)$$ Now let $hspace{0.2cm} u=
Rz$, $hspace{0.3cm}|z|leq 1$, $hspace{0.2cm}$then $hspace{0.2cm} z=frac{u}{R}$, $hspace{0.2cm}$and $hspace{0.2cm}|u|leq R$.$hspace{0.3cm}$ So, $$|f(u)|leq M left(frac{Mfrac{|u|}{R}+|a|}{M+|a|frac{|u|}{R}}right)=Mleft( frac{M|u|+|a|R}{|a||u|+MR}right)hspace{0.2cm}$$ Therefore, the result follows replacing $u$ with $z$. $hspace{0.9cm}Box$
$endgroup$
add a comment |
$begingroup$
Consider $F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$,$hspace{0.3cm}$ $|z|leq 1$ $hspace{0.3cm} Longrightarrow|Rz|leq R hspace{0.5cm}$
Let $$hspace{0.2cm} overline{a}f(Rz)-M^2=0 hspace{0.1cm}\ Longleftrightarrow |a||f(Rz)|= M^2 Longleftrightarrow |f(Rz)|=frac{M^2}{|a|}>M$$ $|F(z)| leq Mhspace{0.3cm} $ on $hspace{0.3cm}|z|=R hspace{0.1cm} Longleftrightarrow |f(Rz)|leq M hspace{0.3cm}$ on $hspace{0.3cm}|z|leq 1 $ $$Longrightarrow|overline{a}f(Rz)| leq |a|M <M^2 Longrightarrow overline{a}f(Rz)-M^2neq 0$$ in $|z| leq 1 $. $$$$So, $F(z)$ is analytic in $|z|leq 1$. $$F(0)=Mleft(frac{f(0)-a}{overline{a}f(0)-M^2}right)=0$$ $$ $$Let $f(Rz)=w$, $hspace{0.4cm}w leq Mhspace{0.3cm}$ on $hspace{0.3cm}|z|=1$. $hspace{0.3cm}$ Now suppose $$left|M frac{w-a}{overline{a}w-M^2}right|^2=M^2 frac{|w|^2 + |a|^2-2hspace{0.1cm} Re(overline{a}w)}{M^4+|a|^2 |w|^2-2hspace{0.1cm} Re(M^2 overline{a}w)}leq 1$$ $Longleftrightarrow M^2 |w|^2+M^2|a|^2leq M^4+|a|^2 |w|^2$ $$Longleftrightarrow M^2 |a|^2-|a|^2|w|^2leq M^4-M^2 |w|^2 $$ $$Longleftrightarrow |a|^2leq M^2 Longleftrightarrow |a| leq M $$ $$$$So,$hspace{0.3cm}F(z) leq1 hspace{0.2cm}$ on $hspace{0.2cm}|z|=1.$ $hspace{0.2cm}$ By Schwarz's Lemma, we have $|F(z)|
leq |z|$, $hspace{0.2cm}$so $$Mleft|frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right| leq|z| Longrightarrow left|frac{frac{f(Rz)}{M}-frac{a}{M}}{1-frac{{a}}{M}frac{f(Rz)}{M}}right|hspace{0.3cm} leq |z|$$ $$ Longrightarrow frac{frac{|f(Rz)|}{M}-frac{|a|}{M}}{1-frac{{|a|}}{M}frac{|f(Rz)|}{M}}hspace{0.3cm} leq |z|$$ $$Longrightarrow frac{|f(Rz)|}{M}-frac{|a|}{M} hspace{0.2cm}leq hspace{0.1cm} |z|-frac{|z||a||f(Rz)|}{M^2}$$ $$Longrightarrow frac{|f(Rz)|}{M}+frac{|z||a||f(Rz)|}{M^2} hspace{0.2cm}leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)| left(frac{1}{M}+hspace{0.2cm}frac{|z||a|}{M^2}right)leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)|leq frac{|z|+frac{|a|}{M}}{frac{1}{M}+frac{|z||a|)}{M^2}}hspace{0.3cm}= Mleft( frac{M|z|+|a|}{M+|z||a|}right)$$ Now let $hspace{0.2cm} u=
Rz$, $hspace{0.3cm}|z|leq 1$, $hspace{0.2cm}$then $hspace{0.2cm} z=frac{u}{R}$, $hspace{0.2cm}$and $hspace{0.2cm}|u|leq R$.$hspace{0.3cm}$ So, $$|f(u)|leq M left(frac{Mfrac{|u|}{R}+|a|}{M+|a|frac{|u|}{R}}right)=Mleft( frac{M|u|+|a|R}{|a||u|+MR}right)hspace{0.2cm}$$ Therefore, the result follows replacing $u$ with $z$. $hspace{0.9cm}Box$
$endgroup$
add a comment |
$begingroup$
Consider $F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$,$hspace{0.3cm}$ $|z|leq 1$ $hspace{0.3cm} Longrightarrow|Rz|leq R hspace{0.5cm}$
Let $$hspace{0.2cm} overline{a}f(Rz)-M^2=0 hspace{0.1cm}\ Longleftrightarrow |a||f(Rz)|= M^2 Longleftrightarrow |f(Rz)|=frac{M^2}{|a|}>M$$ $|F(z)| leq Mhspace{0.3cm} $ on $hspace{0.3cm}|z|=R hspace{0.1cm} Longleftrightarrow |f(Rz)|leq M hspace{0.3cm}$ on $hspace{0.3cm}|z|leq 1 $ $$Longrightarrow|overline{a}f(Rz)| leq |a|M <M^2 Longrightarrow overline{a}f(Rz)-M^2neq 0$$ in $|z| leq 1 $. $$$$So, $F(z)$ is analytic in $|z|leq 1$. $$F(0)=Mleft(frac{f(0)-a}{overline{a}f(0)-M^2}right)=0$$ $$ $$Let $f(Rz)=w$, $hspace{0.4cm}w leq Mhspace{0.3cm}$ on $hspace{0.3cm}|z|=1$. $hspace{0.3cm}$ Now suppose $$left|M frac{w-a}{overline{a}w-M^2}right|^2=M^2 frac{|w|^2 + |a|^2-2hspace{0.1cm} Re(overline{a}w)}{M^4+|a|^2 |w|^2-2hspace{0.1cm} Re(M^2 overline{a}w)}leq 1$$ $Longleftrightarrow M^2 |w|^2+M^2|a|^2leq M^4+|a|^2 |w|^2$ $$Longleftrightarrow M^2 |a|^2-|a|^2|w|^2leq M^4-M^2 |w|^2 $$ $$Longleftrightarrow |a|^2leq M^2 Longleftrightarrow |a| leq M $$ $$$$So,$hspace{0.3cm}F(z) leq1 hspace{0.2cm}$ on $hspace{0.2cm}|z|=1.$ $hspace{0.2cm}$ By Schwarz's Lemma, we have $|F(z)|
leq |z|$, $hspace{0.2cm}$so $$Mleft|frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right| leq|z| Longrightarrow left|frac{frac{f(Rz)}{M}-frac{a}{M}}{1-frac{{a}}{M}frac{f(Rz)}{M}}right|hspace{0.3cm} leq |z|$$ $$ Longrightarrow frac{frac{|f(Rz)|}{M}-frac{|a|}{M}}{1-frac{{|a|}}{M}frac{|f(Rz)|}{M}}hspace{0.3cm} leq |z|$$ $$Longrightarrow frac{|f(Rz)|}{M}-frac{|a|}{M} hspace{0.2cm}leq hspace{0.1cm} |z|-frac{|z||a||f(Rz)|}{M^2}$$ $$Longrightarrow frac{|f(Rz)|}{M}+frac{|z||a||f(Rz)|}{M^2} hspace{0.2cm}leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)| left(frac{1}{M}+hspace{0.2cm}frac{|z||a|}{M^2}right)leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)|leq frac{|z|+frac{|a|}{M}}{frac{1}{M}+frac{|z||a|)}{M^2}}hspace{0.3cm}= Mleft( frac{M|z|+|a|}{M+|z||a|}right)$$ Now let $hspace{0.2cm} u=
Rz$, $hspace{0.3cm}|z|leq 1$, $hspace{0.2cm}$then $hspace{0.2cm} z=frac{u}{R}$, $hspace{0.2cm}$and $hspace{0.2cm}|u|leq R$.$hspace{0.3cm}$ So, $$|f(u)|leq M left(frac{Mfrac{|u|}{R}+|a|}{M+|a|frac{|u|}{R}}right)=Mleft( frac{M|u|+|a|R}{|a||u|+MR}right)hspace{0.2cm}$$ Therefore, the result follows replacing $u$ with $z$. $hspace{0.9cm}Box$
$endgroup$
Consider $F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$,$hspace{0.3cm}$ $|z|leq 1$ $hspace{0.3cm} Longrightarrow|Rz|leq R hspace{0.5cm}$
Let $$hspace{0.2cm} overline{a}f(Rz)-M^2=0 hspace{0.1cm}\ Longleftrightarrow |a||f(Rz)|= M^2 Longleftrightarrow |f(Rz)|=frac{M^2}{|a|}>M$$ $|F(z)| leq Mhspace{0.3cm} $ on $hspace{0.3cm}|z|=R hspace{0.1cm} Longleftrightarrow |f(Rz)|leq M hspace{0.3cm}$ on $hspace{0.3cm}|z|leq 1 $ $$Longrightarrow|overline{a}f(Rz)| leq |a|M <M^2 Longrightarrow overline{a}f(Rz)-M^2neq 0$$ in $|z| leq 1 $. $$$$So, $F(z)$ is analytic in $|z|leq 1$. $$F(0)=Mleft(frac{f(0)-a}{overline{a}f(0)-M^2}right)=0$$ $$ $$Let $f(Rz)=w$, $hspace{0.4cm}w leq Mhspace{0.3cm}$ on $hspace{0.3cm}|z|=1$. $hspace{0.3cm}$ Now suppose $$left|M frac{w-a}{overline{a}w-M^2}right|^2=M^2 frac{|w|^2 + |a|^2-2hspace{0.1cm} Re(overline{a}w)}{M^4+|a|^2 |w|^2-2hspace{0.1cm} Re(M^2 overline{a}w)}leq 1$$ $Longleftrightarrow M^2 |w|^2+M^2|a|^2leq M^4+|a|^2 |w|^2$ $$Longleftrightarrow M^2 |a|^2-|a|^2|w|^2leq M^4-M^2 |w|^2 $$ $$Longleftrightarrow |a|^2leq M^2 Longleftrightarrow |a| leq M $$ $$$$So,$hspace{0.3cm}F(z) leq1 hspace{0.2cm}$ on $hspace{0.2cm}|z|=1.$ $hspace{0.2cm}$ By Schwarz's Lemma, we have $|F(z)|
leq |z|$, $hspace{0.2cm}$so $$Mleft|frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right| leq|z| Longrightarrow left|frac{frac{f(Rz)}{M}-frac{a}{M}}{1-frac{{a}}{M}frac{f(Rz)}{M}}right|hspace{0.3cm} leq |z|$$ $$ Longrightarrow frac{frac{|f(Rz)|}{M}-frac{|a|}{M}}{1-frac{{|a|}}{M}frac{|f(Rz)|}{M}}hspace{0.3cm} leq |z|$$ $$Longrightarrow frac{|f(Rz)|}{M}-frac{|a|}{M} hspace{0.2cm}leq hspace{0.1cm} |z|-frac{|z||a||f(Rz)|}{M^2}$$ $$Longrightarrow frac{|f(Rz)|}{M}+frac{|z||a||f(Rz)|}{M^2} hspace{0.2cm}leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)| left(frac{1}{M}+hspace{0.2cm}frac{|z||a|}{M^2}right)leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)|leq frac{|z|+frac{|a|}{M}}{frac{1}{M}+frac{|z||a|)}{M^2}}hspace{0.3cm}= Mleft( frac{M|z|+|a|}{M+|z||a|}right)$$ Now let $hspace{0.2cm} u=
Rz$, $hspace{0.3cm}|z|leq 1$, $hspace{0.2cm}$then $hspace{0.2cm} z=frac{u}{R}$, $hspace{0.2cm}$and $hspace{0.2cm}|u|leq R$.$hspace{0.3cm}$ So, $$|f(u)|leq M left(frac{Mfrac{|u|}{R}+|a|}{M+|a|frac{|u|}{R}}right)=Mleft( frac{M|u|+|a|R}{|a||u|+MR}right)hspace{0.2cm}$$ Therefore, the result follows replacing $u$ with $z$. $hspace{0.9cm}Box$
edited Dec 14 '18 at 17:38
answered Dec 14 '18 at 4:47
Charles BrannanCharles Brannan
13
13
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013808%2frefinement-of-schwarzs-lemma%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown